-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinference_video.py
109 lines (102 loc) · 7.86 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import os.path as osp
from argparse import ArgumentParser
from glob import glob
if __name__ == '__main__':
"""
RIFE:
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant D --checkpoint ./checkpoints/RIFE/D-RIFE-pro --save_dir ./results/demo_results_D-RIFE-pro --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant DR --checkpoint ./checkpoints/RIFE/DR-RIFE-pro --save_dir ./results/demo_results_DR-RIFE-pro --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant T --checkpoint ./checkpoints/RIFE/T-RIFE --save_dir ./results/demo_results_T-RIFE --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant D --checkpoint ./checkpoints/RIFE/D-RIFE --save_dir ./results/demo_results_D-RIFE --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant TR --checkpoint ./checkpoints/RIFE/TR-RIFE --save_dir ./results/demo_results_TR-RIFE --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model RIFE --variant DR --checkpoint ./checkpoints/RIFE/DR-RIFE --save_dir ./results/demo_results_DR-RIFE --num 1 1
AMT-S:
python inference_video.py --video ./demo/demo.mp4 --model AMT-S --variant T --checkpoint ./checkpoints/AMT-S/T-AMT-S --save_dir ./results/demo_results_T-AMT-S --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model AMT-S --variant D --checkpoint ./checkpoints/AMT-S/D-AMT-S --save_dir ./results/demo_results_D-AMT-S --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model AMT-S --variant TR --checkpoint ./checkpoints/AMT-S/TR-AMT-S --save_dir ./results/demo_results_TR-AMT-S --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model AMT-S --variant DR --checkpoint ./checkpoints/AMT-S/DR-AMT-S --save_dir ./results/demo_results_DR-AMT-S --num 1 1
IFRNet:
python inference_video.py --video ./demo/demo.mp4 --model IFRNet --variant T --checkpoint ./checkpoints/IFRNet/T-IFRNet --save_dir ./results/demo_results_T-IFRNet --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model IFRNet --variant D --checkpoint ./checkpoints/IFRNet/D-IFRNet --save_dir ./results/demo_results_D-IFRNet --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model IFRNet --variant TR --checkpoint ./checkpoints/IFRNet/TR-IFRNet --save_dir ./results/demo_results_TR-IFRNet --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model IFRNet --variant DR --checkpoint ./checkpoints/IFRNet/DR-IFRNet --save_dir ./results/demo_results_DR-IFRNet --num 1 1
EMA-VFI:
python inference_video.py --video ./demo/demo.mp4 --model EMA-VFI --variant T --checkpoint ./checkpoints/EMA-VFI/T-EMA-VFI --save_dir ./results/demo_results_T-EMA-VFI --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model EMA-VFI --variant D --checkpoint ./checkpoints/EMA-VFI/D-EMA-VFI --save_dir ./results/demo_results_D-EMA-VFI --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model EMA-VFI --variant TR --checkpoint ./checkpoints/EMA-VFI/TR-EMA-VFI --save_dir ./results/demo_results_TR-EMA-VFI --num 1 1
python inference_video.py --video ./demo/demo.mp4 --model EMA-VFI --variant DR --checkpoint ./checkpoints/EMA-VFI/DR-EMA-VFI --save_dir ./results/demo_results_DR-EMA-VFI --num 1 1
"""
parser = ArgumentParser()
parser.add_argument('--video', type=str, default='./demo/demo.mp4', help='path of the video')
parser.add_argument('--model', type=str, default='RIFE', help='[ RIFE | IFRNet | AMT-S | EMA-VFI ]')
parser.add_argument('--variant', type=str, default='DR', help='[ T | D | TR | DR ]')
parser.add_argument('--checkpoint', type=str, default='./checkpoints/RIFE/DR-RIFE-pro/', help='path of checkpoint')
parser.add_argument('--save_dir', type=str, default='./results/video_results_DR-RIFE-pro/',
help='where to save interpolation results')
parser.add_argument('--num', type=int, nargs='+', default=[1, 1], help='number of extracted images')
parser.add_argument('--iters', type=int, default=2, help='number of iterations')
parser.add_argument('--gif', action='store_true', help='whether to generate the corresponding gif')
parser.add_argument('--fps', type=int, default=None, help='fps of the output video')
args = parser.parse_args()
prefix_path = '../..'
args.video = osp.join(prefix_path, args.video)
args.checkpoint = osp.join(prefix_path, args.checkpoint)
args.save_dir = osp.join(prefix_path, args.save_dir)
cmd = ''
if args.model == 'RIFE':
os.chdir('models/DI-RIFE')
if args.variant == 'T':
args.checkpoint = osp.join(args.checkpoint, 'train_m_log')
cmd = 'python inference_video_plus.py --video {} --save_dir {} --checkpoint {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num])
)
if args.variant == 'D':
args.checkpoint = osp.join(args.checkpoint, 'train_sdi_log')
cmd = 'python inference_video_plus_sdi.py --video {} --save_dir {} --checkpoint {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num])
)
if args.variant == 'TR' or args.variant == 'DR':
args.checkpoint = osp.join(args.checkpoint, 'train_sdi_log')
cmd = 'python inference_video_plus_sdi_recur.py --video {} --save_dir {} --checkpoint {} --num {} --iters {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num]), args.iters
)
if args.fps is not None:
cmd += ' --fps {}'.format(args.fps)
os.system(cmd)
if args.model == 'IFRNet' or args.model == 'AMT-S':
os.chdir('models/DI-AMT-and-IFRNet')
cfg_name = osp.basename(glob(osp.join(args.checkpoint, '*.yaml'))[0])
if args.variant == 'T':
cmd = 'python inference_video_plus.py --video {} --save_dir {} --checkpoint {} --cfg_name {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, cfg_name, ' '.join([str(x) for x in args.num])
)
if args.variant == 'D':
cmd = 'python inference_video_plus_sdi.py --video {} --save_dir {} --checkpoint {} --cfg_name {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, cfg_name, ' '.join([str(x) for x in args.num])
)
if args.variant == 'TR' or args.variant == 'DR':
cmd = 'python inference_video_plus_sdi_recur.py --video {} --save_dir {} --checkpoint {} --cfg_name {} --num {} --iters {}'.format(
args.video, args.save_dir, args.checkpoint, cfg_name, ' '.join([str(x) for x in args.num]), args.iters
)
if args.fps is not None:
cmd += ' --fps {}'.format(args.fps)
os.system(cmd)
if args.model == 'EMA-VFI':
os.chdir('models/DI-EMA-VFI')
args.checkpoint = osp.join(args.checkpoint, 'train_sdi_log')
if args.variant == 'T':
cmd = 'python inference_video_plus.py --video {} --save_dir {} --checkpoint {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num])
)
if args.variant == 'D':
cmd = 'python inference_video_plus_sdi.py --video {} --save_dir {} --checkpoint {} --num {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num])
)
if args.variant == 'TR' or args.variant == 'DR':
cmd = 'python inference_video_plus_sdi_recur.py --video {} --save_dir {} --checkpoint {} --num {} --iters {}'.format(
args.video, args.save_dir, args.checkpoint, ' '.join([str(x) for x in args.num]), args.iters
)
if args.fps is not None:
cmd += ' --fps {}'.format(args.fps)
os.system(cmd)