-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
84 lines (72 loc) · 3.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import os.path
import numpy as np
import torch
from data_loader.data_loader import Create_Data_Loader, Load_Dataset, Dataset_Split
from util.config import Config, merge_args2cfg
from util.evaluation import Run_Eval
from util.training import Trainer
from util.utils import fix_seed, log_exp_settings, create_AMC_Net
from util.logger import create_logger
from util.visualize import Visualize_ACM, save_training_process
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='train') # train ,eval or visualize
parser.add_argument('--dataset', type=str, default='2016.10a') # 2016.10a, 2016.10b, 2018.01a
parser.add_argument('--seed', type=int, default=2022)
parser.add_argument('--device', type=str,
default=torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
parser.add_argument('--ckpt_path', type=str, default='./checkpoint')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--Draw_Confmat', type=bool, default=True)
parser.add_argument('--Draw_Acc_Curve', type=bool, default=True)
args = parser.parse_args()
fix_seed(args.seed)
cfg = Config(args.dataset, train=(args.mode == 'train'))
cfg = merge_args2cfg(cfg, vars(args))
logger = create_logger(os.path.join(cfg.log_dir, 'log.txt'))
log_exp_settings(logger, cfg)
model = create_AMC_Net(cfg)
logger.info(">>> total params: {:.2f}M".format(
sum(p.numel() for p in list(model.parameters())) / 1000000.0))
Signals, Labels, SNRs, snrs, mods = Load_Dataset(cfg.dataset, logger)
train_set, test_set, val_set, test_idx = Dataset_Split(
Signals,
Labels,
snrs,
mods,
logger)
Signals_test, Labels_test = test_set
if args.mode == 'train':
train_loader, val_loader = Create_Data_Loader(train_set, val_set, cfg, logger)
trainer = Trainer(model,
train_loader,
val_loader,
cfg,
logger)
trainer.loop()
save_training_process(trainer.epochs_stats, cfg)
save_model_name = cfg.dataset + '_' + 'AMC_Net' + '.pkl'
model.load_state_dict(torch.load(os.path.join(cfg.model_dir, save_model_name)))
Run_Eval(model,
Signals_test,
Labels_test,
SNRs,
test_idx,
cfg,
logger)
elif args.mode == 'eval':
model.load_state_dict(torch.load(os.path.join(args.ckpt_path, cfg.dataset + '_' + 'AMC_Net' + '.pkl')))
Run_Eval(model,
Signals_test,
Labels_test,
SNRs,
test_idx,
cfg,
logger)
elif args.mode == 'visualize':
model.load_state_dict(torch.load(os.path.join(args.ckpt_path, cfg.dataset + '_' + 'AMC_Net' + '.pkl')))
for i in range(0, 8):
index = np.random.randint(0, Signals_test.shape[0], 16)
test_sample = Signals_test[index]
Visualize_ACM(model, test_sample, cfg, index)