-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
433 lines (376 loc) · 19.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import cv2
import time
import json
import random
import inspect
import argparse
import numpy as np
from tqdm import tqdm
from dataloaders import make_data_loader
from models.sync_batchnorm.replicate import patch_replication_callback
from models.vs_net import *
from utils.loss import loss_dict
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
from utils import utils
from torch.autograd import Variable
import os.path as osp
from configs import *
import warnings
warnings.filterwarnings("ignore")
class Trainer(object):
def __init__(self, cfg):
self.cfg = cfg
# Define Saver
self.saver = Saver(cfg)
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.cfg["log_tb_dir"])
self.summary.create_summary()
# Define Dataloader
kwargs = {"num_workers": cfg["num_workers"], "pin_memory": True}
self.train_loader, self.val_loader, self.test_loader, dset = make_data_loader(
cfg, **kwargs)
# read landmark centers
self.id2center = np.array(json.load(
open(osp.join(cfg["data_dir"], "id2centers.json")))).astype(np.float64)
self.coding_book = torch.zeros(
(len(self.id2center), cfg["seg_channel"]), dtype=torch.float32).cuda()
torch.nn.init.xavier_uniform(self.coding_book)
print("coding book size = {}".format(self.coding_book.shape))
# generate color map
unique_label = np.arange(len(self.id2center))
unique_label = unique_label.astype(
np.int64) * 6364136223846793005 + 1442695040888963407
color_map = np.zeros((unique_label.shape[0], 3), np.uint8)
color_map[:, 0] = np.bitwise_and(unique_label, 0xff)
color_map[:, 1] = np.bitwise_and(np.right_shift(unique_label, 4), 0xff)
color_map[:, 2] = np.bitwise_and(np.right_shift(unique_label, 8), 0xff)
self.color_map = np.array(color_map)
self.coding_book = Variable(self.coding_book, requires_grad=True)
# Define network
model = VSNet(backbone=cfg["backbone"],
seg_decoder=cfg["seg_decoder"],
vertex_decoder=cfg["vertex_decoder"],
seg_channel=cfg["seg_channel"],
vertex_channel=cfg["vertex_channel"],
output_stride=cfg["out_stride"],
sync_bn=cfg["sync_bn"])
train_params = [{"params": model.get_1x_lr_params(), "lr": cfg["lr"]},
{"params": model.get_10x_lr_params(),
"lr": cfg["lr"] * 10},
{"params": self.coding_book, "lr": cfg["lr"] * 10}
]
# Define Optimizer
if cfg["optimizer"] == "SGD":
optimizer = torch.optim.SGD(train_params, momentum=cfg["momentum"],
weight_decay=cfg["weight_decay"], nesterov=cfg["nesterov"])
elif cfg["optimizer"] == "Adam":
optimizer = torch.optim.Adam(train_params, lr=cfg["lr"],
weight_decay=cfg["weight_decay"], amsgrad=True)
else:
raise NotImplementedError
# Define Criterion
self.seg_criterion = loss_dict[cfg["seg_loss_type"]]
self.vertex_criterion = loss_dict[cfg["vertex_loss_type"]]
self.model, self.optimizer = model, optimizer
# Define Evaluator
self.evaluator = Evaluator(
self.coding_book.shape[0], cfg["vertex_channel"])
# Define lr scheduler
self.scheduler = LR_Scheduler(mode=cfg["lr_scheduler"], base_lr=cfg["lr"],
num_epochs=cfg["epochs"], iters_per_epoch=len(
self.train_loader),
lr_step=cfg["lr_step"])
self.model = torch.nn.DataParallel(self.model)
patch_replication_callback(self.model)
self.model = self.model.cuda()
# Resuming checkpoint
self.best_pred = {"mIoU": 0.0, "Acc": 0.0, "Acc": 0.0,
"FWIoU": 0.0, "translation_median": 1000}
if cfg["resume"] is not None and cfg["resume"] == True:
print(os.path.isfile(cfg["resume_checkpoint"]))
if not os.path.isfile(cfg["resume_checkpoint"]):
raise RuntimeError("=> no checkpoint found at {}" .format(
cfg["resume_checkpoint"]))
checkpoint = torch.load(cfg["resume_checkpoint"])
cfg.opt["start_epoch"] = checkpoint["epoch"] - 1
self.model.module.load_state_dict(checkpoint["state_dict"])
# self.coding_book.load_state_dict(checkpoint["coding_book"])
if not cfg["ft"]:
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.best_pred = checkpoint["best_pred"]
if "coding_book" in checkpoint.keys():
self.coding_book = checkpoint["coding_book"]
else:
print("Alert! coding book does not exist in the checkpoint")
print("=> loaded checkpoint {} (epoch {})"
.format(cfg["resume"], checkpoint["epoch"]))
def training(self, epoch):
train_loss = 0.0
print("=================================")
print("trainning")
print("=================================")
self.model.train()
self.evaluator.reset()
tbar = tqdm(self.train_loader)
num_iter_tr = len(self.train_loader)
num_images = 0
train_seg_loss = 0.0
train_ver_loss = 0.0
for i, data in enumerate(tbar):
image, seg_target, vertex_target = [d.cuda() for d in data[:3]]
valid_mask = data[-1].cuda()
seg_target = seg_target.long()
valid_mask = (seg_target.detach() > 0).float() * valid_mask
self.scheduler(self.optimizer, i, epoch, self.best_pred["mIoU"])
self.optimizer.zero_grad()
seg_pred, vertex_pred, seg_pred_x4s = self.model(image)
loss_seg = 0
if self.cfg["seg_decoder"]:
loss_seg = self.seg_criterion(seg_pred, seg_target, self.coding_book,
margin=self.cfg["seg_loss_margin"],
seg_k=self.cfg["seg_k"],
valid_mask=valid_mask)
train_seg_loss += loss_seg.item()
self.summary.add_scalar(
"train/loss_seg_iter", loss_seg.item(), i + num_iter_tr * epoch)
loss_vertex = 0
if self.cfg["vertex_decoder"]:
loss_vertex = self.vertex_criterion(vertex_pred, vertex_target,
valid_mask)
train_ver_loss += loss_vertex.item()
self.summary.add_scalar(
"train/loss_vertex_iter", loss_vertex.item(), i + num_iter_tr * epoch)
loss = 0
if self.cfg["seg_decoder"]:
loss += loss_seg * self.cfg["seg_loss_ratio"]
if self.cfg["vertex_decoder"]:
loss += loss_vertex * self.cfg["vertex_loss_ratio"]
loss.backward()
self.optimizer.step()
train_loss += loss.item()
tbar.set_description("Train loss: %.9f|%.9f" %
(train_loss / (i + 1), loss.item()))
self.summary.add_scalar(
"train/total_loss_iter", loss.item(), i + num_iter_tr * epoch)
num_images = i * self.cfg["train_batch_size"] + image.data.shape[0]
print("[Epoch: %d, numImages: %5d]" % (epoch, num_images))
print("Loss: %.9f" % (train_loss / num_iter_tr))
self.summary.add_scalar("train/total_loss_epoch",
train_loss / num_iter_tr, epoch)
self.summary.add_scalar("train/total_seg_epoch",
train_seg_loss / num_iter_tr, epoch)
self.summary.add_scalar("train/total_ver_epoch",
train_ver_loss / num_iter_tr, epoch)
# save checkpoint every epoch
is_best = False
self.saver.save_checkpoint({
"epoch": epoch + 1,
"state_dict": self.model.module.state_dict(),
"optimizer": self.optimizer.state_dict(),
"best_pred": self.best_pred,
"coding_book": self.coding_book
}, is_best, filename="checkpoint-backup.pth.tar", save_model=self.cfg["save_model"])
def validation(self, epoch):
print("=================================")
print("validation")
print("=================================")
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc="\r")
num_iter_val = len(self.val_loader)
test_loss = 0.0
num_images = 0
ten_count = []
five_count = []
three_count = []
one_count = []
translation_list = []
angular_list = []
reproject_list = []
test_seg_loss = 0.0
test_ver_loss = 0.0
for i, data in enumerate(tbar):
image, seg_target, vertex_target = [d.cuda() for d in data[:3]]
valid_mask = data[-1].cuda()
pose_target, camera_k_matrix, ori_img = data[3:]
seg_target = seg_target.long()
valid_mask = (seg_target.detach() > 0).float()
with torch.no_grad():
seg_pred, vertex_pred, seg_pred_x4s = self.model(
image)
loss_seg = 0
if self.cfg["seg_decoder"]:
loss_seg = self.seg_criterion(seg_pred, seg_target, self.coding_book,
margin=self.cfg["seg_loss_margin"],
seg_k=self.cfg["seg_k"],
valid_mask=valid_mask)
test_seg_loss += loss_seg.item()
self.summary.add_scalar(
"val/loss_seg_iter", loss_seg.item(), i + num_iter_val * epoch)
loss_vertex = 0
if self.cfg["vertex_decoder"]:
loss_vertex = self.vertex_criterion(vertex_pred, vertex_target,
valid_mask)
test_ver_loss += loss_vertex.item()
self.summary.add_scalar(
"val/loss_vertex_iter", loss_vertex.item(), i + num_iter_val * epoch)
loss = 0
if self.cfg["seg_decoder"]:
loss += loss_seg
if self.cfg["vertex_decoder"]:
loss += loss_vertex * self.cfg["vertex_loss_ratio"]
test_loss += loss.item()
tbar.set_description("Test loss: %.9f" % (test_loss / (i + 1)))
self.summary.add_scalar(
"val/total_loss_iter", loss.item(), i + num_iter_val * epoch)
global_step = i * \
self.cfg["val_batch_size"] + image.data.shape[0]
# evaluate seg_pred
seg_target = seg_target.detach().squeeze()
if self.cfg["seg_decoder"]:
seg_pred, knn = utils.evaluate_segmentation(seg_pred_x4s,
self.coding_book, seg_target.size(), self.cfg["use_own_nn"])
else:
seg_pred = seg_target
# evaluate vertex
pt3d_filter, pt2d_filter, _ = utils.evaluate_vertex_v2(vertex_pred, seg_pred,
self.id2center, inlier_thresh=0.999,
min_mask_num=self.cfg["val_label_filter_threshsold"])
# pt3d_filter, pt2d_filter = utils.evaluate_vertex(vertex_target, seg_pred, self.id2center)
camera_k_matrix = camera_k_matrix.squeeze().numpy()
translation_distance, angular_distance, error = 1e9, 1e9, 1e9
if pt2d_filter.shape[0] > 6:
# pnp
ret, pose_pred = utils.pnp(
pt3d_filter, pt2d_filter, camera_k_matrix)
error = utils.reproject_error(
pt3d_filter, pt2d_filter, pose_pred, camera_k_matrix)
translation_distance, angular_distance = utils.cm_degree_metric(
pose_pred, pose_target)
print(translation_distance, angular_distance, error, i)
ten_count.append(translation_distance <
10 and angular_distance < 10)
five_count.append(translation_distance <
5 and angular_distance < 5)
three_count.append(translation_distance <
3 and angular_distance < 3)
one_count.append(translation_distance <
1 and angular_distance < 1)
translation_list.append(translation_distance)
angular_list.append(angular_distance)
reproject_list.append(error)
# Add batch sample into evaluator
if self.cfg["seg_decoder"]:
self.evaluator.add_seg_batch(seg_target, seg_pred)
if self.cfg["visualize_segmenation"]:
self.summary.visualize_seg_image(ori_img, seg_pred, seg_target,
epoch, i, global_step, self.color_map)
if self.cfg["vertex_decoder"]:
# evaluate vertex_pred
vertex_target, vertex_pred = vertex_target.squeeze(), vertex_pred.squeeze()
self.evaluator.add_vertex_batch(vertex_target, vertex_pred)
# vertex acc的计算
if self.cfg["visualize_voting"]:
if self.cfg["visualize_landmark"] != None and self.cfg["visualize_landmark"]:
self.summary.visualize_vertex_image(ori_img, vertex_pred, vertex_target,
epoch, i, global_step, pt2d_filter, True)
else:
self.summary.visualize_vertex_image(ori_img, vertex_pred, vertex_target,
epoch, i, global_step)
mIoU, Acc, Acc_class, FWIoU = self.summary.visualize_seg_evaluator(
self.evaluator, epoch, "val/seg/")
print("Validation:")
print("[Epoch: %d, numImages: %5d]" % (epoch, num_images))
print("Loss: %.9f" % (test_loss / num_iter_val))
self.summary.add_scalar("val/total_loss_epoch",
test_loss / num_iter_val, epoch)
self.summary.add_scalar("val/total_seg_epoch",
test_seg_loss / num_iter_val, epoch)
self.summary.add_scalar("val/total_ver_epoch",
test_ver_loss / num_iter_val, epoch)
self.summary.add_scalar("val/pnp/10cm_epoch",
np.mean(ten_count), epoch)
self.summary.add_scalar("val/pnp/5cm_epoch",
np.mean(five_count), epoch)
self.summary.add_scalar("val/pnp/3cm_epoch",
np.mean(three_count), epoch)
self.summary.add_scalar("val/pnp/1cm_epoch", np.mean(one_count), epoch)
self.summary.add_scalar(
"val/pnp/translation_median_epoch", np.median(translation_list), epoch)
self.summary.add_scalar(
"val/pnp/angular_median_epoch", np.median(angular_list), epoch)
new_pred = {"mIoU": mIoU.item(), "Acc": Acc.item(), "Acc_class": Acc_class.item(), "FWIoU": FWIoU.item(),
"10cm": np.mean(ten_count),
"5cm": np.mean(five_count), "3cm": np.mean(three_count), "1cm": np.mean(one_count),
"translation_median": np.median(translation_list), "angular_list": np.median(angular_list)}
print(new_pred)
if new_pred["translation_median"] < self.best_pred["translation_median"]:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
"epoch": epoch + 1,
"state_dict": self.model.module.state_dict(),
"optimizer": self.optimizer.state_dict(),
"best_pred": self.best_pred,
"coding_book": self.coding_book
}, is_best, save_model=self.cfg["save_model"])
def main():
parser = argparse.ArgumentParser(
description="PyTorch Landmark Segmentation Training")
parser.add_argument("--dataset", type=str,
choices=["7scenes_loc", "cambridge_loc"], help="experiment config file")
parser.add_argument("--scene", type=str, default="",
help="experiment scene")
parser.add_argument("--gpu-id", type=str, default="",
help="experiment gpu id")
parser.add_argument("--use-aug", type=str, default="true",
choices=["", "true", "false"], help="experiment use aug")
parser.add_argument("--config", type=str, default=None,
help="experiment config file")
parser.add_argument("--debug", type=str, default="",
choices=["", "true", "false"], help="debug")
parser.add_argument("--resume", type=str, default="false",
choices=["", "true", "false"], help="resume")
args = parser.parse_args()
debug = None
if args.debug != "":
debug = (args.debug == "true")
if args.dataset == "7scenes_loc":
cfg = SevenScenesLocConfig(args.config, debug)
elif args.dataset == "cambridge_loc":
cfg = CambridgeLocConfig(args.config, debug)
if args.scene != "":
cfg.opt["scene"] = args.scene
if args.gpu_id != "":
cfg.opt["devices"] = args.gpu_id
if args.use_aug == "true":
cfg.opt["use_aug"] = True
if args.resume == "true":
cfg.opt["resume"] = True
cfg.opt["resume_checkpoint"] = cfg["export_dir"] + \
'/ckpts/checkpoint-backup.pth.tar'
cfg.print_opt()
cfg.set_environmental_variables()
torch.manual_seed(cfg["seed"])
torch.cuda.manual_seed(cfg["seed"])
np.random.seed(cfg["seed"])
random.seed(cfg["seed"])
trainer = Trainer(cfg)
print("Starting Epoch:", trainer.cfg["start_epoch"])
print("Total Epoches:", trainer.cfg["epochs"])
for epoch in range(trainer.cfg["start_epoch"], trainer.cfg["epochs"]):
if cfg["validation_debug"]:
trainer.validation(epoch)
isValidationEpoch = (epoch > cfg["eval_epoch_begin"] and (
epoch + 1) % cfg["eval_interval"] == 0)
if cfg["train"]:
trainer.training(epoch)
if not trainer.cfg["no_val"] and isValidationEpoch == True:
trainer.validation(epoch)
trainer.summary.close()
if __name__ == "__main__":
main()