-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathrequirements-devel.txt
156 lines (135 loc) · 4.91 KB
/
requirements-devel.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# NOTE: Somehow, installing with pip install -e ".[dev]" will cause pip to try to install other packages with the dev feature as well.. thus ours is called `devel
# please install pip requirements using:
# cat requirements.txt | sed -e '/^\s*#.*$/d' -e '/^\s*$/d' | awk '{split($0, a, "@"); if (length(a) > 1) print a[2]; else print $0;}' | xargs -n 1 pip install
# otherwise one single compilation error could eat away like 20 minutes for nothing.
# pip install -e . --no-build-isolation --no-deps
# Core dependencies
# if you've used environment.yml, this will be a no-op
torch
# other requirements
# for terminal image visualization
timg
tyro
yacs
yapf
tqdm
rich
shtab
sympy
pillow
addict
trimesh
imageio
termcolor
tensorboard
scikit-image
scikit-learn
pytorch_msssim
fast-autocomplete
torch-tb-profiler
# other requirements not available in conda
pymcubes
torchdiffeq
opencv-python
# dev requirements
h5py
# for plenoctree conversion
# svox # never used
ipdb
pdbr
ninja
lpips
ujson
pandas
# for unwrapping to get StVK properly
xatlas
kornia
msgpack
jupyter
openpyxl
autopep8
pyntcloud
pyturbojpeg
matplotlib
ruamel.yaml
commentjson
# to support visualization, we need:
nvitop
gpustat @ git+https://github.com/wookayin/gpustat
# for winding_number_remesh
nvdiffrast @ git+https://github.com/NVlabs/nvdiffrast
torchmcubes @ git+https://github.com/tatsy/torchmcubes
# cholespy @ git+https://github.com/dendenxu/cholespy
# installing from conda leads to just numerous problems...
# NOTE: IMPORTANT
pytorch3d @ git+https://github.com/facebookresearch/pytorch3d
detectron2 @ git+https://github.com/facebookresearch/detectron2
# git+https://github.com/dendenxu/large-steps-pytorch # FIXME: FIX THIS
# git+https://github.com/dendenxu/bvh-ray-tracing # FIXME: FIX THIS
# git+https://github.com/YuliangXiu/bvh-distance-queries
# external dependency: easymocap-public (this repo is not publicly available yet)
# for easymocap's vposer: human_pose_prior, this looks like my DotDict implementation... just way more complex
dotmap
# for easymocap loading of SMPL (maybe all pickle loading of SMPL?)
chumpy
# mediapipe # strangely could not find this requirements
func_timeout
pycocotools
tensorboardX
# pyopengl @ git+https://github.com/mmatl/pyopengl # MARK: might not render
human_body_prior @ git+https://github.com/nghorbani/human_body_prior
# https://storage.googleapis.com/open3d-releases-master/python-wheels/open3d-0.16.0-cp310-cp310-manylinux_2_27_x86_64.whl
# http://www.open3d.org/docs/latest/getting_started.html (install the development version from here if the previsou link is expired and python is too new)
# python3.10 support for open3d finally here
# if failed to install open3d (even when installing from latest release?), try to skip it using
# pip install $(grep -v '^ *#\|^open3d' requirements.txt | grep .)
# NOTE: IMPORTANT
open3d
# pip install $(grep -v '^ *#\|^.*open3d\|^torch-sparse\|^torch-geometric\|^.*cholespy\|^.*pytorch3d\|^.*pyopengl' requirements.txt | grep .)
# cat requirements.txt | sed -e '/^\s*#.*$/d' -e '/^\s*$/d' | xargs -n 1 pip install
# Blender utils
# bpy
memory-tempfile
# dearpygui # TOO SLOW
# imgui[glfw] # replaced with imgui_bundle
glfw
PyGLM
pyperclip
clang-format
imgui-bundle
opencv-contrib-python
# MARK: The torchvision version has a memory leak
# https://github.com/pytorch/vision/issues/4378
# pynvjpeg
# MARK: Requires some compiling and may easily fail, but not needed for most of the implementations
tinycudann @ git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
# MARK: prone to change pytorch version, please install these on demand and manually
# spconv-cu118
# functorch
torch-scatter
# torch-sparse
# torch-geometric
# pip install -e . --no-build-isolation --no-deps
# not needed unless you're using ali's implemenetation of VectorQuantize
einops
# not needed unless you're trying to debug torch memory usage using this package directly
pytorch_memlab
# for ply file io
plyfile
# cuda driver for python, so nice for cuda opengl and pytorch interop, no hassle!
cuda-python
# For extracting meshes
pymeshlab
# For encode jpeg
pyturbojpeg
# For gaussian
simple_knn @ git+https://gitlab.inria.fr/bkerbl/simple-knn
diff_gauss @ git+https://github.com/dendenxu/diff-gaussian-rasterization
diff_gaussian_rasterization @ git+https://github.com/graphdeco-inria/diff-gaussian-rasterization
# diff_gauss @ git+https://github.com/slothfulxtx/diff-gaussian-rasterization
diff_point_rasterization @ git+https://github.com/dendenxu/diff-point-rasterization # rasterization of 4k4d's point representation, gradient might still crash
diff_mip_rasterization @ git+https://github.com/dendenxu/diff-mip-rasterization
# TODO: Figure out a way to install taichi-nightly both from pip install -r and xargs
# -i https://pypi.taichi.graphics/simple taichi-nightly
# taichi-splatting # depends on nightly build of taichi, install later than that one
gsplat @ git+https://github.com/dendenxu/gsplat # more aggressive numerical stability check for 4D