-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
201 lines (175 loc) · 8.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'
import torch
# import SummaryWriter before torchvision due to some unknown bugs related to pytorch
# See https://github.com/pytorch/pytorch/issues/30651
from torch.utils.tensorboard import SummaryWriter
import torchvision
import pprint
import random
import subprocess
import numpy as np
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.utils.data.distributed
from torch.nn.parallel import DistributedDataParallel
from torch.nn import SyncBatchNorm
from lib.core.loss import Loss
from lib.core.trainer import Trainer
from lib.core.config import parse_args
from lib.utils.utils import prepare_output_dir
from lib.data_utils.transforms import *
from lib.models import MAED
from lib.dataset.loaders import get_data_loaders
from lib.utils.utils import create_logger, get_optimizer
def main(args, cfg, world_size, rank, local_rank, device, logger):
# ========= Tensorboard Writer ========= #
if rank == 0:
writer = SummaryWriter(log_dir=cfg.LOGDIR)
writer.add_text('config', pprint.pformat(cfg), 0)
else:
writer = None
# ========= Data Transforms ========= #
transforms_3d = torchvision.transforms.Compose([
CropVideo(cfg.DATASET.HEIGHT, cfg.DATASET.WIDTH, cfg.DATASET.ROT_JITTER, cfg.DATASET.SIZE_JITTER, cfg.DATASET.RANDOM_CROP_P, cfg.DATASET.RANDOM_CROP_SIZE),
ColorJitterVideo(cfg.DATASET.COLOR_JITTER, cfg.DATASET.COLOR_JITTER, cfg.DATASET.COLOR_JITTER, cfg.DATASET.COLOR_JITTER),
RandomEraseVideo(cfg.DATASET.ERASE_PROB, cfg.DATASET.ERASE_PART, cfg.DATASET.ERASE_FILL, cfg.DATASET.ERASE_KP, cfg.DATASET.ERASE_MARGIN),
RandomHorizontalFlipVideo(cfg.DATASET.RANDOM_FLIP),
StackFrames(),
ToTensorVideo(),
NormalizeVideo(),
])
transforms_2d = torchvision.transforms.Compose([
CropVideo(cfg.DATASET.HEIGHT, cfg.DATASET.WIDTH, cfg.DATASET.ROT_JITTER, cfg.DATASET.SIZE_JITTER, cfg.DATASET.RANDOM_CROP_P, cfg.DATASET.RANDOM_CROP_SIZE),
RandomEraseVideo(cfg.DATASET.ERASE_PROB, cfg.DATASET.ERASE_PART, cfg.DATASET.ERASE_FILL, cfg.DATASET.ERASE_KP, cfg.DATASET.ERASE_MARGIN),
RandomHorizontalFlipVideo(cfg.DATASET.RANDOM_FLIP),
StackFrames(),
ToTensorVideo(),
NormalizeVideo(),
])
transforms_img = torchvision.transforms.Compose([
CropImage(cfg.DATASET.HEIGHT, cfg.DATASET.WIDTH, cfg.DATASET.ROT_JITTER, cfg.DATASET.SIZE_JITTER, cfg.DATASET.RANDOM_CROP_P, cfg.DATASET.RANDOM_CROP_SIZE),
RandomEraseImage(cfg.DATASET.ERASE_PROB, cfg.DATASET.ERASE_PART, cfg.DATASET.ERASE_FILL, cfg.DATASET.ERASE_KP, cfg.DATASET.ERASE_MARGIN),
RandomHorizontalFlipImage(cfg.DATASET.RANDOM_FLIP),
ToTensorImage(),
NormalizeImage()
])
transforms_val = torchvision.transforms.Compose([
CropVideo(cfg.DATASET.HEIGHT, cfg.DATASET.WIDTH),
StackFrames(),
ToTensorVideo(),
NormalizeVideo(),
])
# ========= Dataloaders ========= #
data_loaders = get_data_loaders(cfg, transforms_3d, transforms_2d, transforms_val, transforms_img, rank, world_size, verbose=rank==0)
# ========= Compile Loss ========= #
loss = Loss(
e_loss_weight=cfg.LOSS.KP_2D_W,
e_3d_loss_weight=cfg.LOSS.KP_3D_W,
e_pose_loss_weight=cfg.LOSS.POSE_W,
e_shape_loss_weight=cfg.LOSS.SHAPE_W,
e_smpl_norm_loss=cfg.LOSS.SMPL_NORM,
e_smpl_accl_loss=cfg.LOSS.ACCL_W,
device=device
)
# ========= Initialize networks, optimizers and lr_schedulers ========= #
model = MAED(
encoder=cfg.MODEL.ENCODER.BACKBONE,
num_blocks=cfg.MODEL.ENCODER.NUM_BLOCKS,
num_heads=cfg.MODEL.ENCODER.NUM_HEADS,
st_mode=cfg.MODEL.ENCODER.SPA_TEMP_MODE,
decoder=cfg.MODEL.DECODER.BACKBONE,
hidden_dim=cfg.MODEL.DECODER.HIDDEN_DIM,
)
model = SyncBatchNorm.convert_sync_batchnorm(model).to(device)
if args.pretrained != '' and os.path.isfile(args.pretrained):
checkpoint = torch.load(args.pretrained, map_location='cpu')
best_performance = checkpoint['performance']
# We empirically choose not to load the pretrained decoder weights from stage1 as it yields better performance.
checkpoint['state_dict'] = {k[len('module.'):]: w for k, w in checkpoint['state_dict'].items() if k.startswith('module.') and not 'smpl' in k and not 'decoder' in k}
model.load_state_dict(checkpoint['state_dict'], strict=False)
if rank==0:
logger.info(f'=> Loaded checkpoint from {args.pretrained}...')
logger.info(f'=> Performance on 3DPW test set {best_performance}')
del checkpoint
elif args.pretrained == '':
if rank==0:
logger.info('=> No checkpoint specified.')
else:
raise ValueError(f'{args.pretrained} is not a checkpoint path!')
model = DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False)
optimizer = get_optimizer(
model=model,
optim_type=cfg.TRAIN.OPTIM.OPTIM,
lr=cfg.TRAIN.OPTIM.LR,
weight_decay=cfg.TRAIN.OPTIM.WD,
momentum=cfg.TRAIN.OPTIM.MOMENTUM,
)
warmup_lr = lambda epoch: (epoch+1) * cfg.TRAIN.OPTIM.WARMUP_FACTOR if epoch < cfg.TRAIN.OPTIM.WARMUP_EPOCH else 0.1**len([m for m in cfg.TRAIN.OPTIM.MILESTONES if m <= epoch])
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=warmup_lr
)
# ========= Start Training ========= #
Trainer(
# Training args
data_loaders=data_loaders,
model=model,
criterion=loss,
optimizer=optimizer,
start_epoch=cfg.TRAIN.START_EPOCH,
end_epoch=cfg.TRAIN.END_EPOCH,
img_use_freq=cfg.TRAIN.IMG_USE_FREQ,
device=device,
lr_scheduler=lr_scheduler,
resume=cfg.TRAIN.RESUME,
num_iters_per_epoch=cfg.TRAIN.NUM_ITERS_PER_EPOCH,
# Validation args
seqlen=cfg.EVAL.SEQLEN,
interp=cfg.EVAL.INTERPOLATION,
# Others
writer=writer,
rank=rank,
debug=cfg.DEBUG,
logdir=cfg.LOGDIR,
world_size=world_size,
debug_freq=cfg.DEBUG_FREQ,
save_freq=cfg.SAVE_FREQ,
).fit()
if __name__ == '__main__':
args, cfg, cfg_file = parse_args()
cfg = prepare_output_dir(cfg, cfg_file)
logger = create_logger(cfg.LOGDIR, phase='train')
# ========= Pytorch Setting & Distributed Initialization ========= #
if "LOCAL_RANK" in os.environ: # for torch.distributed.launch
logger.info("Starting training through torch.distributed.launch...")
world_size = int(os.environ["WORLD_SIZE"])
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["RANK"])
elif 'SLURM_PROCID' in os.environ: # for slurm scheduler
logger.info("Starting training through slurm scheduler...")
world_size = int(os.environ["SLURM_NPROCS"])
local_rank = int(os.environ['SLURM_LOCALID'])
rank = int(os.environ['SLURM_PROCID'])
os.environ['MASTER_ADDR'] = subprocess.check_output("scontrol show hostnames $SLURM_JOB_NODELIST", shell=True).decode("ascii").split("\n")[0]
else:
raise NotImplementedError("Invalid launch.")
torch.cuda.set_device(local_rank)
logger.info(f"Initializing process group... World_size: {world_size}, Rank: {rank}, GPU: {local_rank}, Master_addr: {os.environ['MASTER_ADDR']}")
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=world_size)
device = torch.device('cuda')
if cfg.SEED_VALUE >= 0:
if rank==0:
logger.info(f'Seed value for the experiment {cfg.SEED_VALUE}')
os.environ['PYTHONHASHSEED'] = str(cfg.SEED_VALUE)
random.seed(cfg.SEED_VALUE)
torch.manual_seed(cfg.SEED_VALUE)
np.random.seed(cfg.SEED_VALUE)
if rank==0:
logger.info(pprint.pformat(cfg))
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
main(args, cfg, world_size, rank, local_rank, device, logger)