-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathops.py
68 lines (60 loc) · 3.62 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
__author__ = 'yxzhang'
import tensorflow as tf
from tensorflow.contrib.layers.python.layers import batch_norm
def conv(batch_input, out_channels, stride, kernel_size):
with tf.variable_scope("conv"):
in_channels = batch_input.get_shape()[3]
filter = tf.get_variable("filter", [kernel_size, kernel_size, in_channels, out_channels], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02))
# [batch, in_height, in_width, in_channels], [filter_width, filter_height, in_channels, out_channels]
# => [batch, out_height, out_width, out_channels]
# padded_input = tf.pad(batch_input, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT")
conv = tf.nn.conv2d(batch_input, filter, [1, stride, stride, 1], padding="SAME")
return conv
def full_connect(batch_input, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = batch_input.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(batch_input, matrix) + bias, matrix, bias
else:
return tf.matmul(batch_input, matrix) + bias
def lrelu(x, a):
with tf.name_scope("lrelu"):
# adding these together creates the leak part and linear part
# then cancels them out by subtracting/adding an absolute value term
# leak: a*x/2 - a*abs(x)/2
# linear: x/2 + abs(x)/2
# this block looks like it has 2 inputs on the graph unless we do this
x = tf.identity(x)
return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x)
def relu(x):
with tf.name_scope("relu"):
x = tf.identity(x)
return 0.5 * x + 0.5 * tf.abs(x)
def batchnorm(input, mode):
with tf.variable_scope("batchnorm"):
input = tf.identity(input)
# channels = input.get_shape()[3]
# offset = tf.get_variable("offset", [channels], dtype=tf.float32, initializer=tf.zeros_initializer())
# scale = tf.get_variable("scale", [channels], dtype=tf.float32, initializer=tf.random_normal_initializer(1.0, 0.02))
# mean, variance = tf.nn.moments(input, axes=[0, 1, 2], keep_dims=False)
# variance_epsilon = 1e-5
# normalized = tf.nn.batch_normalization(input, mean, variance, offset, scale, variance_epsilon=variance_epsilon)# train_result1
if mode == 'train':
normalized = tf.layers.batch_normalization(input,training=True)#train_result2
else:
normalized = tf.layers.batch_normalization(input,training=False)#train_result2
# normalized = tf.contrib.layers.batch_norm(input,scale=True,center=True,is_training=True)
return normalized
def deconv(batch_input, out_channels, kernel_size, stride, add):
with tf.variable_scope("deconv"):
batch, in_height, in_width, in_channels = [int(d) for d in batch_input.get_shape()]
output_size = in_height*stride+add
filter = tf.get_variable("filter", [kernel_size, kernel_size, out_channels, in_channels], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.02))
# [batch, in_height, in_width, in_channels], [filter_width, filter_height, out_channels, in_channels]
# => [batch, out_height, out_width, out_channels]
conv = tf.nn.conv2d_transpose(batch_input, filter, [batch, output_size, output_size, out_channels], [1, stride, stride, 1], padding="SAME")
return conv