-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_scores.py
executable file
·389 lines (339 loc) · 15.3 KB
/
report_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from collections import OrderedDict, defaultdict
from orps.lbpp_utils import CodeNode, static_analyze_code
from typing import Dict, List
import os, json
import argparse
import numpy as np
def load_best_nodes(path, select_method) -> Dict[str, List[CodeNode]]:
best_node_dir = f"best_nodes-{select_method}"
best_nodes_path = os.path.join(path, best_node_dir)
task_id_2_best_nodes = {}
for node_uuid in os.listdir(best_nodes_path):
node_path = os.path.join(best_nodes_path, node_uuid)
best_nodes = []
if not node_path.endswith(".json"):
continue
node_attributes = json.load(open(node_path, "r"))
node = CodeNode(node_attributes["current_code"], node_attributes["current_programmer_output"], node_attributes["current_analysis"], node_attributes["current_criticism"], node_attributes["current_score"], node_attributes["current_process_score"], parent=None, task_id=node_attributes["task_id"])
node.dynamic_analysis_on_test_data = node_attributes["dynamic_analysis_on_test_data"]
node.history_codes = node_attributes["history_codes"]
node.history_programmer_outputs = node_attributes["history_programmer_outputs"]
node.history_analyses = node_attributes["history_analyses"]
node.history_criticisms = node_attributes["history_criticisms"]
node.history_scores = node_attributes["history_scores"]
node.calculate_uuid()
best_nodes.append(node)
assert len(best_nodes) > 0, f"Task {node_uuid} has no best node"
assert len(best_nodes) == 1, f"Task {node_uuid} has more than one best node"
task_id_2_best_nodes[best_nodes[0].task_id] = best_nodes[0]
return task_id_2_best_nodes
def merge_data_split(group_path, select_method):
task_id_2_best_nodes = {}
for data_split_path in os.listdir(group_path):
task_id_2_best_nodes.update(load_best_nodes(os.path.join(group_path, data_split_path), select_method))
return task_id_2_best_nodes
def calculate_success_rate(task_id_2_best_node: Dict[str, CodeNode]):
success_ratio_dict = {}
for task_id, best_node in task_id_2_best_node.items():
dynamic_analysis_on_test_data = json.loads(best_node.dynamic_analysis_on_test_data)
try:
success_rate = dynamic_analysis_on_test_data['success_rate']
except KeyError:
success_rate = 0
success_ratio_dict[task_id] = success_rate
sorted_success_ratio_dict = OrderedDict(sorted(success_ratio_dict.items(), key=lambda x: x[0]))
return sum(sorted_success_ratio_dict.values()) / len(sorted_success_ratio_dict)
def calculate_accuracy(task_id_2_best_node: Dict[str, CodeNode]):
task_id_2_pass = {}
for task_id, best_node in task_id_2_best_node.items():
dynamic_analysis_on_test_data = json.loads(best_node.dynamic_analysis_on_test_data)
try:
success_rate = dynamic_analysis_on_test_data['success_rate']
except KeyError:
success_rate = 0
if success_rate == 1.0:
task_id_2_pass[task_id] = True
else:
task_id_2_pass[task_id] = False
return sum(task_id_2_pass.values()) / len(task_id_2_pass)
def normalize_with_outlier_filter(value: float, standard: float, task_id: str, metric_name: str, threshold: float = 10) -> float:
"""Normalize a value against a standard with outlier filtering.
Args:
value: The value to normalize
standard: The standard value to compare against
task_id: Task ID for logging
metric_name: Name of t
he metric for logging
threshold: Maximum allowed ratio (default 10.0)
Returns:
float: Normalized value, capped at threshold if exceeds it
"""
if value < 0:
return 1
standard_adjusted = standard + (1 if standard == 0 else 0)
ratio = value / standard_adjusted
if ratio > threshold:
print(f"Warning: Outlier detected in {task_id} for {metric_name}: {ratio:.2f}x (capped at {threshold:.1f}x)")
return threshold
return ratio
def calculate_average_metrics(task_id_2_best_node: Dict[str, CodeNode], standard_metrics_path: str, success_rate: float=1.0):
standard_metrics = json.load(open(standard_metrics_path, "r"))
task_id_2_standard_metrics = {}
for task_id, metrics in standard_metrics.items():
task_id_2_standard_metrics[task_id] = metrics
metrics_dict = {
'time_enabled_ns': defaultdict(float),
'instruction_count': defaultdict(float),
'branch_misses': defaultdict(float),
'page_faults': defaultdict(float),
'code_length': defaultdict(float),
'ast_node_count': defaultdict(float),
'cyclomatic_complexity': defaultdict(float),
'cognitive_complexity': defaultdict(float),
}
valid_tasks = set()
for task_id, best_node in task_id_2_best_node.items():
is_valid = True
best_node_info = json.loads(best_node.dynamic_analysis_on_test_data)
if len(best_node_info) == 0:
print(f"Task {task_id} has no dynamic analysis on test data")
is_valid = False
continue
best_node_current_analysis = CodeNode.parse_analysis_str(best_node.current_analysis)
best_node_static_analysis = best_node_current_analysis.get('static', {})
try:
best_node_static_analysis = static_analyze_code(best_node.current_code)
except Exception as e:
best_node_static_analysis = {}
if len(best_node_static_analysis) == 0:
print(f"Task {task_id} has no static analysis")
is_valid = False
continue
standard_metrics = task_id_2_standard_metrics[task_id]
if len(best_node_info.get('average_metrics', {})) == 0:
print(f"Task {task_id} has no average metrics in dynamic analysis")
is_valid = False
continue
required_fields = ['code_length', 'ast_node_count', 'cyclomatic_complexity', 'cognitive_complexity']
if not all(field in best_node_static_analysis for field in required_fields):
print(f"Task {task_id} missing some static analysis fields")
is_valid = False
continue
try:
metrics_dict['time_enabled_ns'][task_id] = normalize_with_outlier_filter(
best_node_info['average_metrics']['time_enabled_ns'],
standard_metrics['mean_time_enabled_ns'],
task_id,
'time_enabled_ns'
)
metrics_dict['instruction_count'][task_id] = normalize_with_outlier_filter(
best_node_info['average_metrics']['instruction_count'],
standard_metrics['mean_instruction_count'],
task_id,
'instruction_count'
)
metrics_dict['branch_misses'][task_id] = normalize_with_outlier_filter(
best_node_info['average_metrics']['branch_misses'],
standard_metrics['mean_branch_misses'],
task_id,
'branch_misses'
)
metrics_dict['page_faults'][task_id] = normalize_with_outlier_filter(
best_node_info['average_metrics']['page_faults'],
standard_metrics['mean_page_faults'],
task_id,
'page_faults'
)
except (KeyError, TypeError, ZeroDivisionError) as e:
print(f"Task {task_id} has invalid dynamic metrics: {str(e)}")
is_valid = False
continue
try:
metrics_dict['code_length'][task_id] = normalize_with_outlier_filter(
best_node_static_analysis['code_length'],
standard_metrics['code_length'],
task_id,
'code_length'
)
metrics_dict['ast_node_count'][task_id] = normalize_with_outlier_filter(
best_node_static_analysis['ast_node_count'],
standard_metrics['ast_node_count'],
task_id,
'ast_node_count'
)
try:
cyclo_complexity = (
sum(best_node_static_analysis['cyclomatic_complexity'].values()) /
len(best_node_static_analysis['cyclomatic_complexity'])
)
metrics_dict['cyclomatic_complexity'][task_id] = normalize_with_outlier_filter(
cyclo_complexity,
standard_metrics['mean_cyclomatic_complexity'],
task_id,
'cyclomatic_complexity'
)
except (KeyError, ZeroDivisionError, AttributeError):
print(f"Task {task_id} has invalid cyclomatic complexity format")
is_valid = False
continue
try:
metrics_dict['cognitive_complexity'][task_id] = normalize_with_outlier_filter(
best_node_static_analysis['cognitive_complexity']['mean'],
standard_metrics['mean_cognitive_complexity'],
task_id,
'cognitive_complexity'
)
except (KeyError, TypeError):
print(f"Task {task_id} has invalid cognitive complexity format")
is_valid = False
continue
except (KeyError, TypeError, ZeroDivisionError, AttributeError) as e:
print(f"Task {task_id} has invalid static metrics: {str(e)}")
is_valid = False
continue
if is_valid:
valid_tasks.add(task_id)
if not valid_tasks:
print("Warning: No valid tasks found for computing metrics!")
return tuple([-1] * 11)
static_metrics = {
'code_length': False,
'ast_node_count': False,
'cyclomatic_complexity': False,
'cognitive_complexity': False
}
dynamic_metrics = {
'time_enabled_ns': False,
'instruction_count': False,
'branch_misses': False,
'page_faults': False
}
averages = {
metric: np.average(list(values.values())) * (1.0 / success_rate) if metric in dynamic_metrics else np.average(list(values.values())) * (1.0 / success_rate)
for metric, values in metrics_dict.items()
}
static_metrics = {
'code_length': False,
'ast_node_count': False,
'cyclomatic_complexity': False,
'cognitive_complexity': False
}
dynamic_metrics = {
'time_enabled_ns': False,
'instruction_count': False,
'branch_misses': False,
'page_faults': False
}
static_improvements = []
for metric, higher_is_better in static_metrics.items():
ratio = averages[metric]
improvement = (ratio - 1) if higher_is_better else (1 - ratio)
static_improvements.append(improvement)
dynamic_improvements = []
for metric, higher_is_better in dynamic_metrics.items():
ratio = averages[metric]
improvement = (ratio - 1) if higher_is_better else (1 - ratio)
dynamic_improvements.append(improvement)
avg_static_improvement = np.average(static_improvements)
avg_dynamic_improvement = np.average(dynamic_improvements)
non_empty_ratio = len(valid_tasks) / len(task_id_2_best_node)
return (
averages['time_enabled_ns'],
averages['instruction_count'],
averages['branch_misses'],
averages['page_faults'],
averages['code_length'],
averages['ast_node_count'],
averages['cyclomatic_complexity'],
averages['cognitive_complexity'],
non_empty_ratio,
avg_static_improvement,
avg_dynamic_improvement
)
def save_results(metrics_dict, output_path, result_path):
"""Save results to a JSON file if result_path is provided."""
if not result_path:
return
experiment_name = os.path.basename(output_path.rstrip('/'))
existing_results = {}
if os.path.exists(result_path):
with open(result_path, 'r') as f:
existing_results = json.load(f)
existing_results[experiment_name] = metrics_dict
with open(result_path, 'w') as f:
json.dump(existing_results, f, indent=2)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate best node performance and save results')
parser.add_argument(
'-o',
'--output_path',
type=str,
default=None,
help='Path to output tasks'
)
parser.add_argument(
'-s',
'--select_method',
type=str,
default='success_ratio-time_enabled_ns',
help='Strategy for selecting best node'
)
parser.add_argument(
'-d',
'--standard_metrics_path',
type=str,
default=None,
help='Path to standard metrics'
)
parser.add_argument(
'-r',
'--result_path',
type=str,
help='Path to save results JSON file (optional)',
default=None
)
args = parser.parse_args()
task_id_2_best_node = merge_data_split(args.output_path, args.select_method)
success_rate = calculate_success_rate(task_id_2_best_node)
accuracy = calculate_accuracy(task_id_2_best_node)
(
avg_time_enabled_ns,
avg_instruction_count,
avg_branch_misses,
avg_page_faults,
avg_code_length,
avg_ast_node_count,
avg_cyclomatic_complexity,
avg_cognitive_complexity,
non_empty_ratio,
avg_static_improvement,
avg_dynamic_improvement
) = calculate_average_metrics(task_id_2_best_node, args.standard_metrics_path, success_rate)
metrics = {
"pass_at_1": accuracy,
"avg_accuracy": success_rate,
"non_empty_solutions": non_empty_ratio,
"avg_time": avg_time_enabled_ns,
"avg_instructions": avg_instruction_count,
"avg_branch_misses": avg_branch_misses,
"avg_page_faults": avg_page_faults,
"avg_code_length": avg_code_length,
"avg_ast_node_count": avg_ast_node_count,
"avg_cyclomatic_complexity": avg_cyclomatic_complexity,
"avg_cognitive_complexity": avg_cognitive_complexity,
"avg_static_improvement": avg_static_improvement,
"avg_dynamic_improvement": avg_dynamic_improvement
}
if args.result_path:
save_results(metrics, args.output_path, args.result_path)
print(f"Success rate: {success_rate}, Accuracy: {accuracy}")
print(f"Average Static Improvement: {avg_static_improvement:.1%}")
print(f"Average Dynamic Improvement: {avg_dynamic_improvement:.1%}")
print(f"(Positive values indicate improvement over standard solution)")
print('Results for: ', args.output_path)
print(f"| Pass@1 | Pass Cases % | Pass Compile % | Time | Instructions | Branch misses | "
f"Page faults | Code length | AST nodes | Cyclomatic compl. | Cognitive compl. |")
print(f"| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |")
print(f"| {accuracy * 100 :.2f} | {success_rate * 100:.2f} | {non_empty_ratio * 100:.2f} | {avg_time_enabled_ns * 100 :.2f} | "
f"{avg_instruction_count * 100 :.2f} | {avg_branch_misses * 100 :.2f} | {avg_page_faults * 100:.2f} | {avg_code_length * 100:.2f} | "
f"{avg_ast_node_count * 100:.2f} | {avg_cyclomatic_complexity * 100 :.2f} | {avg_cognitive_complexity * 100:.2f} |")