-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster_merge.py
178 lines (158 loc) · 4.65 KB
/
cluster_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#coding=utf-8
from __future__ import print_function
import os
import sys
import faiss
import numpy as np
import pdb
import shutil
import networkx as nx
from sklearn.cluster import DBSCAN
import scipy.cluster.hierarchy as sch
import matplotlib.pyplot as plt
from tqdm import tqdm
dataf = sys.argv[1] #待聚类数据列表,格式为imgpath \t group \t feature
IP_ct_thread = 0.6
USE_GPU = 0
featdim = 128
with open(dataf,'r') as rf:
lines = rf.readlines()
orgimgnum = len(lines)
org_img_dict = {}
org_feat_dict = {}
keydict = {}
idx = 0
for line in lines:
imgpath,feat = eval(line)
basename = os.path.basename(imgpath)
basekey = basename.split('_')[0]
basedir = os.path.dirname(imgpath)
label = int(basedir.split('/')[-1])
if label not in org_img_dict:
org_img_dict[label] = [imgpath]
org_feat_dict[label] = [feat]
else:
org_img_dict[label] = org_img_dict[label]+[imgpath]
org_feat_dict[label] = org_feat_dict[label]+[feat]
if basekey not in keydict:
keydict[basekey] = [label]
else:
if label in keydict[basekey]:
continue
keydict[basekey] = keydict[basekey]+[label]
assert len(org_img_dict)==len(org_feat_dict)
orgimggrp = len(org_img_dict)
platenum = len(keydict)
print("org platenum:{} img group:{} number:{}".format(platenum,orgimggrp,orgimgnum))
newlabel = 0
newdict = {}
for basekey in tqdm(keydict):
labellist = keydict[basekey]
gnum = len(labellist)
if gnum==1:
continue
new_img_dict = {}
new_feat_dict = {}
imgnum = 0
for label in labellist:
new_img_dict[label] = org_img_dict[label]
new_feat_dict[label] = org_feat_dict[label]
imgnum += len(org_img_dict[label])
#print("\nbefore merge, group:{} number:{}".format(gnum,imgnum))
centeridx = []
centerlist = []
for label in new_feat_dict:
featlist = new_feat_dict[label]
featarr = np.array(featlist)
avgfeat = np.mean(featarr,axis=0)
centerlist.append(avgfeat)
centeridx.append(label)
centerarr = np.array(centerlist).astype(np.float32)
ctidxarr = np.array(centeridx)
assert len(centeridx)==len(centerlist)
#计算各簇中心点间距离,并建立网络图
if USE_GPU:
res = faiss.StandardGpuResources()
d_index = faiss.IndexFlatIP(featdim) # build the index
if USE_GPU:
d_index = faiss.index_cpu_to_gpu(res, 0, d_index)
id_index = faiss.IndexIDMap(d_index)
id_index.add_with_ids(centerarr, ctidxarr)
D, I = id_index.search(centerarr, 5) # sanity check
D, I = id_index.search(centerarr, 5) # actual search
edges= set()
for key,I_vec,D_vec in zip(ctidxarr,I,D):
viewset = set()
for index,dis in zip(I_vec,D_vec):
if key==index or dis < IP_ct_thread:
continue
aid,bid = ((min(key,index), max(key,index)))
edges.add(tuple((aid,bid)))
viewset.add(tuple((aid,bid)))
#print(viewset)
G = nx.Graph()
G.add_edges_from(edges)
#print("G num of edges:{}".format(G.number_of_edges()))
#print("G num of nodes:{}".format(G.number_of_nodes()))
connected_g=[]
for i in nx.connected_components(G):
connected_g.append(i)
#print(centeridx)
#print(connected_g)
#print(new_img_dict)
merge_img_dict = {}
merge_feat_dict = {}
merge_idx = 0
countnum = 0
#合并相似的簇
for net in connected_g:
merge_img = []
merge_feat = []
for idx in net:
merge_img += new_img_dict[idx]
merge_feat += new_feat_dict[idx]
centeridx.remove(idx)
merge_img_dict[merge_idx] = merge_img
merge_feat_dict[merge_idx] = merge_feat
merge_idx+=1
countnum += len(merge_img)
for idx in centeridx:
merge_img_dict[merge_idx] = new_img_dict[idx]
merge_feat_dict[merge_idx] = new_feat_dict[idx]
merge_idx+=1
countnum += len(new_img_dict[idx])
assert len(merge_feat_dict)==len(merge_img_dict)
#print('merge similar group, new group:{}, image number:{}'.format(len(merge_img_dict),countnum))
if gnum!=len(merge_img_dict):
print("org group:{} new group:{} new label:{} length:{}".format(gnum,len(merge_img_dict),newlabel,len(merge_img_dict)))
else:
print("same gn")
maxnum = 0
maxkey = 0
for key in merge_img_dict:
if len(merge_img_dict[key])>maxnum:
maxnum = len(merge_img_dict[key])
maxkey = key
newdict[newlabel] = merge_img_dict[maxkey]
newlabel += 1
print("final group:",len(newdict))
savedir = 'merge_dir'
shutil.rmtree(savedir)
os.mkdir(savedir)
finallst = []
for key in newdict:
imgdir = os.path.join(savedir,str(key))
if not os.path.exists(imgdir):
os.mkdir(imgdir)
imglist = newdict[key]
for img in imglist:
nstr = '\t'.join((img,str(key)))
finallst.append(nstr)
img = img.replace('/train/execute/carface_zhibo/pureid_190318','pudata_2k')
baseimg = os.path.basename(img)
nimg = os.path.join(imgdir,baseimg)
#shutil.copy(img,nimg)
savef = 'merge_'+os.path.basename(dataf)
with open(savef,'w') as wf:
for item in finallst:
print(item,file=wf)