-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday18.txt
267 lines (213 loc) · 6.59 KB
/
day18.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
--- Day 18: Many-Worlds Interpretation ---
As you approach Neptune, a planetary security system detects you and activates
a giant tractor beam on Triton! You have no choice but to land.
A scan of the local area reveals only one interesting feature: a massive
underground vault. You generate a map of the tunnels (your puzzle input). The
tunnels are too narrow to move diagonally.
Only one entrance (marked @) is present among the open passages (marked .) and
stone walls (#), but you also detect an assortment of keys (shown as lowercase
letters) and doors (shown as uppercase letters). Keys of a given letter open
the door of the same letter: a opens A, b opens B, and so on. You aren't sure
which key you need to disable the tractor beam, so you'll need to collect all
of them.
For example, suppose you have the following map:
#########
#b.A.@.a#
#########
Starting from the entrance (@), you can only access a large door (A) and a key
(a). Moving toward the door doesn't help you, but you can move 2 steps to
collect the key, unlocking A in the process:
#########
#b.....@#
#########
Then, you can move 6 steps to collect the only other key, b:
#########
#@......#
#########
So, collecting every key took a total of 8 steps.
Here is a larger example:
########################
#f.D.E.e.C.b.A.@.a.B.c.#
######################.#
#d.....................#
########################
The only reasonable move is to take key a and unlock door A:
########################
#f.D.E.e.C.b.....@.B.c.#
######################.#
#d.....................#
########################
Then, do the same with key b:
########################
#f.D.E.e.C.@.........c.#
######################.#
#d.....................#
########################
...and the same with key c:
########################
#f.D.E.e.............@.#
######################.#
#d.....................#
########################
Now, you have a choice between keys d and e. While key e is closer, collecting
it now would be slower in the long run than collecting key d first, so that's
the best choice:
########################
#f...E.e...............#
######################.#
#@.....................#
########################
Finally, collect key e to unlock door E, then collect key f, taking a grand
total of 86 steps.
Here are a few more examples:
########################
#...............b.C.D.f#
#.######################
#.....@.a.B.c.d.A.e.F.g#
########################
Shortest path is 132 steps: b, a, c, d, f, e, g
#################
#i.G..c...e..H.p#
########.########
#j.A..b...f..D.o#
########@########
#k.E..a...g..B.n#
########.########
#l.F..d...h..C.m#
#################
Shortest paths are 136 steps;
one is: a, f, b, j, g, n, h, d, l, o, e, p, c, i, k, m
########################
#@..............ac.GI.b#
###d#e#f################
###A#B#C################
###g#h#i################
########################
Shortest paths are 81 steps; one is: a, c, f, i, d, g, b, e, h
How many steps is the shortest path that collects all of the keys?
--- Part Two ---
You arrive at the vault only to discover that there is not one vault, but four
- each with its own entrance.
On your map, find the area in the middle that looks like this:
...
.@.
...
Update your map to instead use the correct data:
@#@
###
@#@
This change will split your map into four separate sections, each with its own
entrance:
####### #######
#a.#Cd# #a.#Cd#
##...## ##@#@##
##.@.## --> #######
##...## ##@#@##
#cB#Ab# #cB#Ab#
####### #######
Because some of the keys are for doors in other vaults, it would take much too
long to collect all of the keys by yourself. Instead, you deploy four
remote-controlled robots. Each starts at one of the entrances (@).
Your goal is still to collect all of the keys in the fewest steps, but now,
each robot has its own position and can move independently. You can only
remotely control a single robot at a time. Collecting a key instantly unlocks
any corresponding doors, regardless of the vault in which the key or door is
found.
For example, in the map above, the top-left robot first collects key a,
unlocking door A in the bottom-right vault:
#######
#@.#Cd#
##.#@##
#######
##@#@##
#cB#.b#
#######
Then, the bottom-right robot collects key b, unlocking door B in the
bottom-left vault:
#######
#@.#Cd#
##.#@##
#######
##@#.##
#c.#.@#
#######
Then, the bottom-left robot collects key c:
#######
#@.#.d#
##.#@##
#######
##.#.##
#@.#.@#
#######
Finally, the top-right robot collects key d:
#######
#@.#.@#
##.#.##
#######
##.#.##
#@.#.@#
#######
In this example, it only took 8 steps to collect all of the keys.
Sometimes, multiple robots might have keys available, or a robot might have to
wait for multiple keys to be collected:
###############
#d.ABC.#.....a#
######@#@######
###############
######@#@######
#b.....#.....c#
###############
First, the top-right, bottom-left, and bottom-right robots take turns
collecting keys a, b, and c, a total of 6 + 6 + 6 = 18 steps. Then, the
top-left robot can access key d, spending another 6 steps; collecting all of
the keys here takes a minimum of 24 steps.
Here's a more complex example:
#############
#DcBa.#.GhKl#
#.###@#@#I###
#e#d#####j#k#
###C#@#@###J#
#fEbA.#.FgHi#
#############
- Top-left robot collects key a.
- Bottom-left robot collects key b.
- Top-left robot collects key c.
- Bottom-left robot collects key d.
- Top-left robot collects key e.
- Bottom-left robot collects key f.
- Bottom-right robot collects key g.
- Top-right robot collects key h.
- Bottom-right robot collects key i.
- Top-right robot collects key j.
- Bottom-right robot collects key k.
- Top-right robot collects key l.
In the above example, the fewest steps to collect all of the keys is 32.
Here's an example with more choices:
#############
#g#f.D#..h#l#
#F###e#E###.#
#dCba@#@BcIJ#
#############
#nK.L@#@G...#
#M###N#H###.#
#o#m..#i#jk.#
#############
One solution with the fewest steps is:
- Top-left robot collects key e.
- Top-right robot collects key h.
- Bottom-right robot collects key i.
- Top-left robot collects key a.
- Top-left robot collects key b.
- Top-right robot collects key c.
- Top-left robot collects key d.
- Top-left robot collects key f.
- Top-left robot collects key g.
- Bottom-right robot collects key k.
- Bottom-right robot collects key j.
- Top-right robot collects key l.
- Bottom-left robot collects key n.
- Bottom-left robot collects key m.
- Bottom-left robot collects key o.
This example requires at least 72 steps to collect all keys.
After updating your map and using the remote-controlled robots, what is the
fewest steps necessary to collect all of the keys?