Skip to content

Latest commit

 

History

History
1117 lines (750 loc) · 47 KB

GAN.md

File metadata and controls

1117 lines (750 loc) · 47 KB

Ready to train Pytorch implementation of the CVPR'19 paper "Self-Supervised GANs via Auxiliary Rotation Loss"

https://github.com/vandit15/Self-Supervised-Gans-Pytorch

[ICLR 2020] A repository for extremely fast adversarial training using FGSM https://github.com/locuslab/fast_adversarial

Ian Goodfellow:对抗机器学习 https://www.bilibili.com/video/av52414025

[ICCV 2019] "AutoGAN: Neural Architecture Search for Generative Adversarial Networks" by Xinyu Gong, Shiyu Chang, Yifan Jiang and Zhangyang Wang https://github.com/TAMU-VITA/AutoGAN

DCGAN LSGAN WGAN-GP DRAGAN PyTorch https://github.com/LynnHo/DCGAN-LSGAN-WGAN-GP-DRAGAN-Pytorch

用GAN实现人脸渐变 https://www.bilibili.com/video/av67800453/ https://drive.google.com/drive/folders/1LBWcmnUPoHDeaYlRiHokGyjywIdyhAQb?usp=drive_open

MetalGAN: a Cluster-based Adaptive Training for Few-Shot Adversarial Colorization https://arxiv.org/abs/1909.07654

对抗生成网络(GANs):从理解到实践(生成手写数字) https://towardsdatascience.com/graduating-in-gans-going-from-understanding-generative-adversarial-networks-to-running-your-own-39804c283399

(PyTorch)50行代码实现对抗生成网络(GAN) https://github.com/devnag/pytorch-generative-adversarial-networks

Metrics and methods for robustness evaluation of neural networks with generative models https://github.com/igor-buzhinsky/latent-space-nn-evaluation

SPIRAL:用强化对抗学习19笔画张明星脸

https://github.com/deepmind/spiral

GIMP 的 GauGAN 涂鸦图像生成插件

https://github.com/prusnak/gimp-plugin-gaugan

TextCaps : Handwritten Character Recognition with Very Small Datasets》V Jayasundara, S Jayasekara, H Jayasekara, J Rajasegaran, S Seneviratne, R Rodrigo [University of Moratuwa & University of Sydney] (2019)

https://github.com/vinojjayasundara/textcaps 用capsule network生成逼真训练样本,用200样本在MNIST上达到98.7%精度

This repository provides the code for our work on in-the-wild image synthesis and manipulation. https://github.com/aayushbansal/OpenShapes

基于GauGAN的涂鸦转照片工具

https://github.com/noyoshi/smart-sketch

Official PyTorch Implementation of Image Generation from Layout - CVPR 2019 https://layout2im.cs.ubc.ca https://github.com/zhaobozb/layout2im

用单个分类器实现图像生成、图到图转换、图像修复(补全)、辅助绘画等任务

https://colab.research.google.com/drive/1rCIitoeXy1Ae8HYnArCDgUBcw1IDyGxD

Official PyTorch implementation of GDWCT (CVPR 2019) https://github.com/WonwoongCho/GDWCT

GANs学习路线图 https://github.com/machinelearningmindset/Generative-Adversarial-Networks-Roadmap

用fastai实现SPADE涂鸦变照片 https://towardsdatascience.com/implementing-spade-using-fastai-6ad86b94030a

深入GANs https://github.com/mrdragonbear/GAN-Tutorial

Image-to-image translation with flow-based generative model https://github.com/yenchenlin/pix2pix-flow

TorchGAN:基于PyTorch的GAN简易高效训练研究框架 https://github.com/torchgan/torchgan https://torchgan.readthedocs.io/en/latest/

CVPR 2018 paper "Disentangled Person Image Generation" https://github.com/charliememory/Disentangled-Person-Image-Generation

Pytorch-CycleGAN https://github.com/aitorzip/PyTorch-CycleGAN

用StyleGAN生成“权力的游戏”人物 https://blog.nanonets.com/stylegan-got/

Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018 https://github.com/azadis/MC-GAN

Text Generation Using A Variational Autoencoder https://github.com/Toni-Antonova/VAE-Text-Generation

(PyTorch)GAN工具箱(实现集锦) https://github.com/facebookresearch/pytorch_GAN_zoo

GAN图片编辑:恶犬秒变萌汪 https://github.com/quolc/neural-collage 内部表示拼接空间可控图像合成——基于CNN的图像编辑策略,通过在训练GAN模型中操纵图像特征空间表示改变任意区域图像语义信息

StyleGAN made with Keras (without growth or mixing regularization) https://github.com/manicman1999/StyleGAN-Keras

SPADE涂鸦绘画逼真照片合成

https://github.com/NVlabs/SPADE

TecoGAN(时序一致GAN)视频超分辨率实现

https://github.com/thunil/TecoGAN

SC-FEGAN : Face Editing Generative Adversarial Network with User's Sketch and Color

https://github.com/JoYoungjoo/SC-FEGAN

(Pytorch)人脸正面化GAN https://github.com/scaleway/frontalization

Pytorch Implementation of NeurIPS'18 paper on Generative Image Manipulation with Hierarchical Semantic Structures https://github.com/xcyan/neurips18_hierchical_image_manipulation

Official PyTorch implementation of Harmonizing Maximum Likelihood with GANs for Multimodal Conditional Generation (ICLR 2019) https://github.com/soochan-lee/MR-GAN

TextureGAN in Pytorch http://texturegan.eye.gatech.edu/ https://github.com/janesjanes/Pytorch-TextureGAN

An unofficial PyTorch implementation of SNGAN (ICLR 2018) and cGANs with projection discriminator (ICLR 2018). https://github.com/crcrpar/pytorch.sngan_projection

Implementation A Style-Based Generator Architecture for Generative Adversarial Networks in PyTorch https://github.com/rosinality/style-based-gan-pytorch

This is a tensorflow implementation of the paper: StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks. https://github.com/hujinsen/StarGAN-Voice-Conversion

Video style transfer using feed-forward networks. https://github.com/manuelruder/fast-artistic-videos

Pytorch-based tools for visualizing and understanding the neurons of a GAN https://github.com/CSAILVision/gandissect

iGAN全称是“通过生成式对抗网络进行交互式图像生成”,是UC伯克利和Adobe CTL开发的一个研究实验项目。只需寥寥勾勒几笔,iGAN就可以根据用户的描绘实时生成媲美照片的图像。它可以用于实现能根据用户的颜色和形状提示自动生成图像的智能绘图程序,也可以作为可视化调试工具,帮助理解和调试深度生成模型。 https://github.com/junyanz/iGAN

StarGAN的全称是“用联合生成式对抗网络实现多领域的图想到图像转换”(https://arxiv.org/pdf/1711.09020.pdf),通过单一的模型实现多种图像转换功能,例如转换人物的发色、性别、年龄、肤色,甚至表情等。 https://github.com/yunjey/StarGAN

漫游无限之城(自动生成) https://github.com/marian42/wavefunctioncollapse

Pixel Level Data Augmentation for Semantic Image Segmentation using Generative Adversarial Networks https://www.arxiv-vanity.com/papers/1811.00174/

真人头像漫画化 https://github.com/jerryli27/TwinGAN/blob/master/docs/blog/blog_CH.md

Night-to-Day Image Translation for Retrieval-based Localization https://github.com/AAnoosheh/ToDayGAN

ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributes https://arxiv.org/abs/1803.10562 https://github.com/Prinsphield/ELEGANT

效果超赞的图片自动增强:GANs非成对学习图像增强 https://github.com/nothinglo/Deep-Photo-Enhancer

CartoonGAN: Generative Adversarial Networks for Photo Cartoonization(卡通转换) https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch

Eye In-Painting with Exemplar Generative Adversarial Networks(眼睛替换) https://github.com/bdol/exemplar_gans

pix2pix舞姿迁移Demo https://github.com/GordonRen/pose2pose

Code for “Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis” https://github.com/guoyongcs/AEGAN

Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation https://github.com/Ha0Tang/C2GAN

StyleGAN2 Distillation for Feed-forward Image Manipulation https://github.com/EvgenyKashin/stylegan2-distillation

STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing

https://github.com/csmliu/STGAN

Simple Tensorflow implementation of FusionGAN(姿势替换) https://github.com/taki0112/FusionGAN-Tensorflow

Code for our paper: You Only Propagate Once: Painless Adversarial Training Using Maximal Principle

https://github.com/a1600012888/YOPO-You-Only-Propagate-Once

Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis

https://github.com/xh-liu/CC-FPSE

神经网络涂鸦的乐趣

https://github.com/libreai/neural-painters-x

SinGAN: Learning a Generative Model from a Single Natural Image

https://github.com/tamarott/SinGAN

LostGANs: Image Synthesis From Reconfigurable Layout and Style

https://github.com/WillSuen/LostGANs

对抗训练浅谈:意义、方法和思考

https://kexue.fm/archives/7234?sharesource=weibo

LocoGAN -- Locally Convolutional GAN

https://github.com/gmum/LocoGAN Code will be available after 20th may. https://arxiv.org/abs/2002.07897

StyleGAN2 - Colab Notebook containing code for training + visualization + projection https://github.com/parthsuresh/stylegan2-colab

StyleGAN2 - Official TensorFlow Implementation with practical improvements https://github.com/valentinvieriu/stylegan2

强行跨界“动作迁移” https://github.com/AliaksandrSiarohin/first-order-model

Generating RGB photos from RAW image files with PyNET (PyTorch) https://github.com/aiff22/PyNET-PyTorch

Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs (arXiv 2020) https://github.com/sangwoomo/freezeD

Official Implementation of "Style Generator Inversion for Image Enhancement and Animation". https://github.com/avivga/style-image-prior

The code for the paper "Disentangled GANs for Controllable Generation of High-Resolution Images" https://github.com/AnonymousDisentangledGans/Disentangled_GANs

《A Style-Based Generator Architecture for Generative Adversarial Networks》(CVPR 2018) https://github.com/huangzh13/StyleGAN.pytorch

The official Tensorflow implementation for ICCV'19 paper 'Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints' https://github.com/ningyu1991/GANFingerprints

Tensorflow implement of "Eye In-Painting with Exemplar Generative Adversarial Networks" https://github.com/zhangqianhui/Exemplar-GAN-Eye-Inpainting-Tensorflow

An Out-of-the-Box Replicate of GANimation using PyTorch, pretrained weights are available! https://github.com/donydchen/ganimation_replicate

An implementation of ObamaNet: Photo-realistic lip-sync from text. https://github.com/acvictor/Obama-Lip-Sync

Semisupervised learning for adversarial robustness https://arxiv.org/pdf/1905.13736.pdf https://github.com/yaircarmon/semisup-adv

TPU enabled Tensorflow implementation of "Large Scale GAN Training for High Fidelity Natural Image Synthesis" (BigGAN) https://github.com/Octavian-ai/BigGAN-TPU-TensorFlow

Seeing what a GAN cannot generate https://github.com/davidbau/ganseeing

A pytorch implementation of the GAN-TTS: HIGH FIDELITY SPEECH SYNTHESIS WITH ADVERSARIAL NETWORKS https://github.com/yanggeng1995/GAN-TTS

SteganoGAN is a tool for creating steganographic images using adversarial training. https://github.com/DAI-Lab/SteganoGAN

《CPGAN: Full-Spectrum Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis》 https://github.com/dongdongdong666/CPGAN

《Creating High Resolution Images with a Latent Adversarial Generator》D Berthelot, P Milanfar, I Goodfellow [Google Research] (2020) https://github.com/google-research/lag

DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis https://github.com/MinfengZhu/DM-GAN

Semi-Supervised StyleGAN for Disentanglement Learning

https://github.com/NVlabs/High-res-disentanglement-datasets

pytorch implementation of "Mask-Guided Portrait Editing with Conditional GANs"

https://github.com/cientgu/Mask_Guided_Portrait_Editing

Code to train and evaluate the GeNeVA-GAN model for the GeNeVA task proposed in our ICCV 2019 paper "Tell, Draw, and Repeat: Generating and modifying images based on continual linguistic instruction" https://github.com/Maluuba/GeNeVA

A tensorflow Implement for BeautyGAN:Instance-level facial makeup transfer with deep generative adversarial networks. https://github.com/baldFemale/beautyGAN-tf-Implement

Pytorch implementation of GANimation with pretrained weights. https://github.com/vipermu/ganimation

unsupervised video and image generation https://github.com/musikisomorphie/swd

Aggregation via Separation: Boosting Facial Landmark Detector with Semi-Supervised Style Translation https://github.com/TheSouthFrog/stylealign

Cycle-consistent Conditional Adversarial Transfer Networks, ACM MM 2019 https://github.com/lijin118/3CATN

We propose a new variant GAN model to deal with image generation and transformation,especially in facial attributes area. https://github.com/punkcure/Iterative-GAN

This repository contains the source codes for the paper "Unsupervised cycle-consistent deformation for shape matching". https://github.com/ThibaultGROUEIX/CycleConsistentDeformation

《OneGAN: Simultaneous Unsupervised Learning of Conditional Image Generation, Foreground Segmentation, and Fine-Grained Clustering》 https://www.arxiv-vanity.com/papers/1912.13471/

【Pytorch实现的StyleGAN编码器】 https://github.com/jacobhallberg/pytorch_stylegan_encoder

神经网络老视频翻新 http://iizuka.cs.tsukuba.ac.jp/projects/remastering/en/index.html

【基于StyleGAN2条件模型的WikiArt图像生成】 https://github.com/pbaylies/stylegan2

两分钟论文解读之StyleGAN2

https://arxiv.org/abs/1912.04958 https://github.com/NVlabs/stylegan2 https://weibo.com/tv/v/IshQb5Lfq?fid=1034:4467417141936136

'Simple StyleGan2 for Pytorch' https://github.com/lucidrains/stylegan2-pytorch

Ambient Lighting Generation for Flash Images with Guided Conditional Adversarial Networks

https://github.com/jozech/flash-to-ambient

【StyleGAN模型可视化交互工具】’GANInterface - Tool to interface with a StyleGAN model'

https://github.com/nolan-dev/GANInterface

'基于StyleGAN的人脸属性编辑器'

https://github.com/a312863063/seeprettyface-face_editor

StyleGAN2

https://github.com/NVlabs/stylegan2 https://github.com/rosinality/stylegan2-pytorch https://github.com/manicman1999/StyleGAN2-Tensorflow-2.0

【CoupleGenerator:根据照片生成你的“另一半”】 https://github.com/irfanICMLL/CoupleGenerator

《Deep Plastic Surgery: Robust and Controllable Image Editing with Human-Drawn Sketches》 https://www.arxiv-vanity.com/papers/2001.02890/

《Painting Many Pasts: Synthesizing Time Lapse Videos of Paintings》 https://arxiv.org/abs/2001.01026

'基于StyleGAN2的新版人脸生成器' https://github.com/a312863063/generators-with-stylegan2

【StarGAN v2 非官方简单复现(Tensorflow)】 https://github.com/taki0112/StarGAN_v2-Tensorflow

《SketchTransfer: A Challenging New Task for Exploring Detail-Invariance and the Abstractions Learned by Deep Networks》 https://www.arxiv-vanity.com/papers/1912.11570/

《UWGAN: Underwater GAN for Real-world Underwater Color Restoration and Dehazing》 https://github.com/infrontofme/UWGAN_UIE

【非官方PyTorch 1.0.1实现的StyleGAN2】 https://github.com/tomguluson92/StyleGAN2_PyTorch

'动漫脸生成器 - 用StyleGAN训练出的动漫脸生成器' https://github.com/a312863063/seeprettyface-ganerator-dongman

【GANs的PyTorch实现集锦】 https://github.com/Yangyangii/GAN-Tutorial

条件StyleGAN标志生成 https://github.com/cedricoeldorf/ConditionalStyleGAN

Yash Katariya 的 TensorFlow 2.0 实战系列教程 DCGAN(有中文) https://www.tensorflow.org/tutorials/generative/dcgan Pix2Pix:https://www.tensorflow.org/tutorials/generative/pix2pix CycleGAN(有中文):https://www.tensorflow.org/tutorials/generative/cyclegan

基于 CycleGAN 的人脸“小丑化” https://github.com/junkwhinger/jokerise

Semantic Object Accuracy for Generative Text-to-Image Synthesis https://github.com/tohinz/semantic-object-accuracy-for-generative-text-to-image-synthesis

Guided Image-to-Image Translation with Bi-Directional Feature Transformation https://github.com/vt-vl-lab/Guided-pix2pix

GAN Lab:在浏览器里玩转GAN https://poloclub.github.io/ganlab/

用StyleGAN训练的黄种人人脸生成器 https://github.com/a312863063/seeprettyface-generator-yellow

用StyleGAN训练出的网红脸生成器 https://github.com/a312863063/seeprettyface-generator-wanghong

GAN PyTorch实现集锦 https://github.com/ozanciga/gans-with-pytorch

(PyTorch)GANs训练库 https://github.com/unit8co/vegans

Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation (CVPR 2019 Oral) https://github.com/Ha0Tang/SelectionGAN

Video Generation from Single Semantic Label Map https://github.com/junting/seg2vid

Memory Replay GANs: learning to generate images from new categories without forgetting https://github.com/WuChenshen/MeRGAN

PacGAN: The power of two samples in generative adversarial networks, NeurIPS 2018 https://arxiv.org/abs/1712.04086 https://github.com/fjxmlzn/PacGAN

生成模型教程(及演示)集锦 https://github.com/omerbsezer/Generative_Models_Tutorial_with_Demo

An "infinite"-resolution and interpretable GAN. It works based on a differentiable photo editing model and reinforcement learning. (ACM Transactions on Graphics, presented at SIGGRAPH 2018) https://github.com/yuanming-hu/exposure

[MSG-GAN] Any body can GAN! Highly stable and robust architecture. Requires little to no hyperparameter tuning. https://github.com/akanimax/BMSG-GAN

PyTorch implementation of DRAW: A Recurrent Neural Network For Image Generation trained on Devanagari dataset. https://github.com/Natsu6767/Generating-Devanagari-Using-DRAW

生成对抗网络(Generative Adversarial Networks,简称GAN)的一个大集合,作者列举了生成对抗网络领域各式各样的应用集合,大部分为论文,包含少数的 GitHub 项目。该项目对于 GAN 领域覆盖面全面,论文列表整理清晰,GAN 方向的研究者可以从这个项目中查询到想看的经典的论文或者扩充自己的知识储备 https://github.com/hindupuravinash/the-gan-zoo

PyTorch implementation of InfoGAN by Mohit Jain https://github.com/Natsu6767/InfoGAN-PyTorch

基于GAN的大都会艺术博物馆收藏交互式浏览 https://github.com/Microsoft/GenStudio

万字综述之生成对抗网络 https://mp.weixin.qq.com/s?__biz=MzIwMTc4ODE0Mw==&mid=2247495668&idx=1&sn=e7e959b2bdd7b2763b9207ccb80fa6bc&chksm=96ea3074a19db96208a51d26f7b5b4ef9c3a37a7799ec270becc77203de4294235041ede7206&token=2004841509&lang=zh_CN#rd

BigGAN-PyTorch - The author's officially unofficial PyTorch BigGAN implementation https://github.com/ajbrock/BigGAN-PyTorch https://github.com/huggingface/pytorch-pretrained-BigGAN

A keras (tensorflow) reimplementation of MUNIT: Multimodal Unsupervised Image-to-Image Translation https://arxiv.org/abs/1804.04732 https://github.com/shaoanlu/MUNIT-keras

Disentangling Multiple Conditional Inputs in GANs https://github.com/zalandoresearch/disentangling_conditional_gans

A new gesture-to-gesture translation framework. Gesture-to-Gesture Translation in the Wild via Category-Independent Conditional Maps, to be presented in ACM International Conference on Multimedia, 2019. https://github.com/yhlleo/TriangleGAN

On the "steerability" of generative adversarial networks https://github.com/ali-design/gan_steerability

SaGAN PyTorch "Generative Adversarial Network with Spatial Attention for Face Attribute Editing" https://github.com/elvisyjlin/SpatialAttentionGAN

使用GAN一年得到的GAN训练十条经验(教训) https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628

从随意涂鸦到逼真照片:GauGAN的可视化解析 https://adamdking.com/blog/gaugan/

训练GANs的陷阱与提示 https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9

DreamTime - DreamTime allows you to transform photos to get free entertainment. https://github.com/private-dreamnet/dreamtime

PetSwap少样本宠物图片迁移在线Demo https://github.com/nvlabs/FUNIT/

A large-scale face dataset for face parsing, recognition, generation and editing.

https://github.com/switchablenorms/CelebAMask-HQ

Neural Rerendering in the Wild

https://github.com/google/neural_rerendering_in_the_wild

The implementation of StyleGAN on PyTorch 1.0.1 https://github.com/tomguluson92/StyleGAN_PyTorch

The authors' official implementation of GANalyze, a framework for studying cognitive properties such as memorability, aesthetics, and emotional valence using genenerative models. https://github.com/LoreGoetschalckx/GANalyze

Mask Embedding in conditional GAN for Guided Synthesis of High Resolution Images https://github.com/johnryh/Face_Embedding_GAN

GAN漫画人物生成实战 https://github.com/nikitaa30/Manga-GAN

Semi-supervised Image Attribute Editing using Generative Adversarial Networks https://arxiv.org/abs/1907.01841

【改进单幅图像GANs训练技术】《Improved Techniques for Training Single-Image GANs》 https://github.com/tohinz/ConSinGAN

【用GAN生成表格数据】《GANs for tabular data》 https://github.com/Diyago/GAN-for-tabular-data

【ADGAN可控人体图像合成】《Controllable Person Image Synthesis with Attribute-Decomposed GAN》

https://github.com/menyifang/ADGAN

Mimicry:轻量级PyTorch库,旨在实现可复现的GAN研究

https://github.com/kwotsin/mimicry

In-Domain GAN Inversion for Real Image Editing

https://github.com/genforce/idinvert

可解释GAN控制发现(GANSpace):在激活空间进行主成分分析,来发现GAN的可解释控制,如视角变化、老化、光照和一天内的时间等 https://github.com/harskish/ganspace

Structural-analogy from a Single Image Pair https://github.com/rmokady/structural-analogy/

BachGAN: High-Resolution Image Synthesis from Salient Object Layout https://github.com/Cold-Winter/BachGAN

计算机视觉中的GANs——有条件图像/目标生成 https://theaisummer.com/gan-computer-vision/ https://theaisummer.com/gan-computer-vision-object-generation/

【StarGAN v2官方实现 & 动物脸数据集】’StarGAN v2 - Official PyTorch Implementation (CVPR 2020)'

https://github.com/clovaai/stargan-v2

文本转手写的转化工具

https://github.com/saurabhdaware/text-to-handwriting https://saurabhdaware.github.io/text-to-handwriting/

Generating Sequences With Recurrent Neural Networks https://github.com/sjvasquez/handwriting-synthesis https://seanvasquez.com/handwriting-generation/ https://arxiv.org/abs/1308.0850

【GAN训练过程可视化】’Visualization of GAN training process'

https://github.com/EvgenyKashin/gan-vis

【用DCGAN生成手写数字图像(Keras)】《How to Generate Images of Handwritten Digits using DCGAN》 https://morioh.com/p/28fd0b611e09

【StyleGAN演示网页】’stylegan-web - A web porting for NVlabs' StyleGAN.'

https://github.com/k-l-lambda/stylegan-web

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。 https://www.aminer.cn/search/pub?q=Generative%20Adversarial%20Networks

《CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks》

https://github.com/dvl-tum/ciagan

【预训练StyleGAN模型合集】’Awesome Pretrained StyleGAN - A collection of pre-trained StyleGAN models to download'

https://github.com/justinpinkney/awesome-pretrained-stylegan

【TensorFlow 2.x实现的StyleGAN2】’StyleGAN2-TensorFlow-2.x - Unofficial implementation of StyleGAN2 using TensorFlow 2.x.' https://github.com/rosasalberto/StyleGAN2-TensorFlow-2.x

【StyleGAN2模型训练实战】’Practical aspects of StyleGAN2 training - I have trained StyleGAN2 from scratch with a dataset of female portraits at 1024px resolution.'

https://github.com/l4rz/practical-aspects-of-stylegan2-training

【GAN模型库】’Jittor-GAN - Our GAN model zoo supports 27 kinds of GAN' https://github.com/Jittor/gan-jittor

《GAN — StyleGAN & StyleGAN2》

https://medium.com/@jonathan_hui/gan-stylegan-stylegan2-479bdf256299

Big GANs Are Watching You: Towards Unsupervised Object Segmentation with Off-the-Shelf Generative Models https://github.com/anvoynov/BigGANsAreWatching

用StyleGAN2合成高分辨率图像 https://news.developer.nvidia.com/synthesizing-high-resolution-images-with-stylegan2/

Differentiable Augmentation for Data-Efficient GAN Training https://github.com/mit-han-lab/data-efficient-gans

Contrastive Generative Adversarial Networks https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample https://github.com/shirgur/hp-vae-gan

生成對抗模式 GAN 的介紹 https://www.slideshare.net/yenlung/gan-90396897

【当StyleGAN2遇上切尔诺夫脸(Chernoff Face)】 https://www.ihatethefuture.com/2020/06/deep-chernoff-faces.html

【GANs训练:从理论到实践】《Training GANs - From Theory to Practice | Off the convex path》 http://www.offconvex.org/2020/07/06/GAN-min-max/

Closed-Form Factorization of Latent Semantics in GANs

https://github.com/genforce/sefa

《XingGAN for Person Image Generation》 https://github.com/Ha0Tang/XingGAN https://www.arxiv-vanity.com/papers/2007.09278/

【讨论:GANs有哪些好Tricks?】《[D] Best GAN Tricks : MachineLearning》 https://www.reddit.com/r/MachineLearning/comments/i085a8/d_best_gan_tricks/

Detecting and Simulating Artifacts in GAN Fake Images https://github.com/ColumbiaDVMM/AutoGAN

Pytorch implementation for ManiGAN: Text-Guided Image Manipulation. https://github.com/mrlibw/ManiGAN

A Tensorflow implementation of AnimeGAN for fast photo animation ! This is the Open source of the paper <AnimeGAN: a novel lightweight GAN for photo animation>, which uses the GAN framwork to transform real-world photos into anime images. https://github.com/TachibanaYoshino/AnimeGAN

Code for "Audio-driven Talking Face Video Generation with Learning-based Personalized Head Pose" https://github.com/yiranran/Audio-driven-TalkingFace-HeadPose

Official PyTorch implementation of "Improved Techniques for Training Single-Image GANs" https://github.com/tohinz/ConSinGAN

Edge Guided GANs with Semantic Preserving for Semantic Image Synthesis https://github.com/Ha0Tang/EdgeGAN

Image Processing Using Multi-Code GAN Prior https://github.com/genforce/mganprior

BachGAN: High-Resolution Image Synthesis from Salient Object Layout

https://github.com/Cold-Winter/BachGAN

ECCV'20 paper In-Domain GAN Inversion for Real Image Editing code https://github.com/genforce/idinvert

GANSpace: Discovering Interpretable GAN Controls https://github.com/harskish/ganspace

CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation https://github.com/Ha0Tang/LGGAN

This repository contains code to replicate results from the ICASSP 2020 paper "StarGAN for Emotional Speech Conversion: Validated by Data Augmentation of End-to-End Emotion Recognition". https://github.com/glam-imperial/EmotionalConversionStarGAN

Creating High Resolution Images with a Latent Adversarial Generator https://github.com/google-research/lag

PyTorch implementations for our TPAMI paper "Line Drawings for Face Portraits from Photos using Global and Local Structure based GANs". https://github.com/yiranran/APDrawingGAN2

A pytroch implementation of the FB-MelGAN https://github.com/yanggeng1995/FB-MelGAN

Codebase for "Time-series Generative Adversarial Networks (TimeGAN)" https://github.com/jsyoon0823/TimeGAN

MTSS-GAN: Multivariate Time Series Simulation Generative Adversarial Networks https://github.com/firmai/mtss-gan

Authors official implementation of "Big GANs Are Watching You" https://github.com/anvoynov/BigGANsAreWatching

Analyzing and Improving the Image Quality of StyleGAN https://github.com/huangzh13/StyleGAN2.pytorch

StarGAN v2 — Official TensorFlow Implementation https://github.com/clovaai/stargan-v2-tensorflow

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network https://github.com/justin941208/MatchGAN

Semantic Pyramid for Image Generation PyTorch https://github.com/ChristophReich1996/Semantic_Pyramid_for_Image_Generation

Diverse Image Generation via Self-Conditioned GANs https://github.com/stevliu/self-conditioned-gan

Data-Efficient GANs with DiffAugment https://github.com/mit-han-lab/data-efficient-gans

The official implementation of "Train Sparsely, Generate Densely: Memory-efficient Unsupervised Training of High-resolution Temporal GAN" https://github.com/pfnet-research/tgan2

This is a pytorch implementation of the paper "On Leveraging Pretrained GANs for Limited-Data Generation". https://github.com/MiaoyunZhao/GANTransferLimitedData

Non-official + minimal reimplementation of HoloGAN by Nguyen-Phuoc, et al: https://arxiv.org/abs/1904.01326 https://github.com/christopher-beckham/hologan-pytorch

Attentive Normalization for Conditional Image Generation https://github.com/shepnerd/AttenNorm

Code for the paper "Guided Image Generation with Conditional Invertible Neural Networks" (2019) https://github.com/VLL-HD/conditional_invertible_neural_networks

Official PyTorch implementation of the paper: "Deep Single Image Manipulation". https://github.com/eliahuhorwitz/DeepSIM

PA-GAN Tensorflow, PA-GAN: Progressive Attention Generative Adversarial Network for Facial Attribute Editing https://github.com/LynnHo/PA-GAN-Tensorflow

[CVPR 2020] Code for paper "AdversarialNAS: Adversarial Neural Architecture Search for GANs". https://github.com/chengaopro/AdversarialNAS

Convert keywords into painting https://github.com/azmiozgen/text2painting

MineGAN: effective knowledge transfer from GANs to target domains with few images https://github.com/yaxingwang/MineGAN

Implementation of Swapping Autoencoder for Deep Image Manipulation (https://arxiv.org/abs/2007.00653) in PyTorch https://github.com/rosinality/swapping-autoencoder-pytorch

In-Domain GAN Inversion for Real Image Editing https://github.com/genforce/idinvert_pytorch

TSIT: A Simple and Versatile Framework for Image-to-Image Translation https://github.com/EndlessSora/TSIT

Rewriting a Deep Generative Model, ECCV 2020 (oral). Edits the weights of a deep generative network by rewriting associative memory directly, without training data. https://github.com/davidbau/rewriting

PyTorch Implementation of CUT, Contrastive Learning for Unpaired Image-to-Image Translation, ECCV 2020 https://github.com/taesungp/contrastive-unpaired-translation

Code for the paper "Controlling Style and Semantics in Weakly-Supervised Image Generation" https://github.com/dariopavllo/style-semantics

StyleFlow: Attribute-conditioned Exploration of StyleGAN-generated Images using Conditional Continuous Normalizing Flows

https://github.com/RameenAbdal/StyleFlow

MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait Editing

https://github.com/tzt101/MichiGAN

Bipartite Graph Reasoning GANs for Person Image Generation

https://github.com/Ha0Tang/BiGraphGAN

Dual In-painting Model for Unsupervised Gaze Correction and Animation in the Wild https://github.com/zhangqianhui/GazeAnimation

DF-GAN: Deep Fusion Generative Adversarial Networks for Text-to-Image Synthesis https://github.com/tobran/DF-GAN

StyleGAN2 Distillation for Feed-forward Image Manipulation

https://github.com/Gie-ok-Hie-ut/pytorch-stylegan2-distillation

Multimodal Image-to-Image Translation via a Single Generative Adversarial Network https://arxiv.org/abs/2008.01681

CA-GAN: Weakly Supervised Color Aware GAN for Controllable Makeup Transfer https://arxiv.org/abs/2008.10298v1

StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows https://arxiv.org/abs/2008.02401

Attribute-guided image generation from layout https://arxiv.org/abs/2008.11932

vanilla GAN, cGAN, DCGAN等GAN的PyTorch实现 https://github.com/gordicaleksa/pytorch-gans

Generative models with kernel distance in data space https://github.com/gmum/lcw-generator https://arxiv.org/abs/2009.07327

几种GANs的PyTorch实现(DCGAN、WGAN、WGAN-GP、SN-GAN) https://github.com/w86763777/pytorch-gan-collections

Imaginaire:NVIDIA的PyTorch GAN模型库,包括有监督图-图转换、无监督图-图转换、视频-视频转换等 https://github.com/NVlabs/imaginaire

Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image Translation https://arxiv.org/abs/2003.00187

One Model to Reconstruct Them All: A Novel Way to Use the Stochastic Noise in StyleGAN https://github.com/Bartzi/one-model-to-reconstruct-them-all

S2cGAN: Semi-Supervised Training of Conditional GANs with Fewer Labels https://arxiv.org/abs/2010.12622

Teaching a GAN What Not to Learn https://arxiv.org/abs/2010.15639

End-to-End Chinese Landscape Painting Creation Using Generative Adversarial Networks https://github.com/alicex2020/Chinese-Landscape-Painting-Dataset

PaddleGAN:飞桨生成对抗网络开发套件,为开发者提供经典及前沿的生成对抗网络高性能实现,并支撑开发者快速构建、训练及部署生成对抗网络,以供学术、娱乐及产业应用 https://github.com/PaddlePaddle/PaddleGAN

HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms https://github.com/mahmoudnafifi/HistoGAN

Mask-Guided Discovery of Semantic Manifolds in Generative Models https://github.com/bmolab/masked-gan-manifold

Navigating the GAN Parameter Space for Semantic Image Editing https://github.com/yandex-research/navigan

Anime BigGAN Toy:BigGAN动漫图片生成 https://github.com/HighCWu/anime_biggan_toy

Lipschitz Regularized CycleGAN for Improving Semantic Robustness in Unpaired Image-to-image Translation https://arxiv.org/abs/2012.04932

gan-mosaics:基于Stylegan2-Ada的马赛克图案生成 https://github.com/zaidalyafeai/gan-mosaics

GAN-Control: Explicitly Controllable GANs

https://arxiv.org/abs/2101.02477

Bridging Unpaired Facial Photos And Sketches By Line-drawings https://arxiv.org/abs/2102.00635

Off-Policy Reinforcement Learning for Efficient and Effective GAN Architecture Search https://github.com/Yuantian013/E2GAN

Designing an Encoder for StyleGAN Image Manipulation https://github.com/omertov/encoder4editing

StyleGAN2 fork with scripts and convenience modifications for creative media synthesis https://github.com/aydao/stylegan2-surgery

This is a pytorch implementation of the paper "On Leveraging Pretrained GANs for Limited-Data Generation". https://github.com/MiaoyunZhao/GANTransferLimitedData

StyleGAN2 - Official TensorFlow Implementation with practical improvements https://github.com/justinpinkney/stylegan2

Official Implementation for "Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation" https://github.com/eladrich/pixel2style2pixel

code for our ECCV 2020 spotlight paper "Multimodal Shape Completion via Conditional Generative Adversarial Networks" https://github.com/ChrisWu1997/Multimodal-Shape-Completion

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation https://github.com/NVlabs/stylegan2-ada

StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation https://github.com/RoyWheels/stylegan2-ada

Official Implementation of the paper "A U-Net Based Discriminator for Generative Adversarial Networks" (CVPR 2020) https://github.com/boschresearch/unetgan

Unsupervised image-to-image translation method via pre-trained StyleGAN2 network https://github.com/HideUnderBush/UI2I_via_StyleGAN2

Code for the paper Generate High Resolution Images With Generative Variational Autoencoder https://github.com/abhinavsagar/gvae

Code for our Paper "One Model to Reconstruct Them All: A Novel Way to Use the Stochastic Noise in StyleGAN" https://github.com/Bartzi/one-model-to-reconstruct-them-all

Few-shot adaptation of GANs. https://github.com/e-271/few-shot-gan

Towards a Better Global Loss Landscape of GANs https://arxiv.org/abs/2011.04926 https://github.com/AilsaF/RS-GAN

This is official PyTorch implementation of ECCV 2020 paper SemanticAdv: Generating Adversarial Examplesvia Attribute-conditioned Image Editing https://github.com/AI-secure/SemanticAdv

Implementation of π-GAN, for 3d-aware image synthesis, in Pytorch https://github.com/lucidrains/pi-GAN-pytorch

Taming Transformers for High-Resolution Image Synthesis https://github.com/CompVis/taming-transformers

Pytorch implementation for TediGAN: Text-Guided Diverse Image Generation and Manipulation.

https://github.com/weihaox/TediGAN

Resolution Dependent GAN Interpolation for Controllable Image Synthesis Between Domains https://github.com/justinpinkney/toonify

Official code repository for Instance Selection for GANs. https://github.com/uoguelph-mlrg/instance_selection_for_gans

SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network https://github.com/zhaoyuzhi/Semantic-Colorization-GAN

Describe What to Change: A Text-guided Unsupervised Image-to-Image Translation Approach, accepted to ACM International Conference on Multimedia(ACM MM), 2020 https://github.com/yhlleo/DWC-GAN

Code accompanying the NeurIPS 2020 submission "Teaching a GAN What Not to Learn." https://github.com/DarthSid95/RumiGANs

StyleGAN2-ADA - Official PyTorch implementation https://github.com/NVlabs/stylegan2-ada-pytorch

CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

https://github.com/tohinz/CharacterGAN

"TransGAN: Two Transformers Can Make One Strong GAN", https://github.com/VITA-Group/TransGAN

SWAGAN: A Style-based Wavelet-driven Generative Model https://arxiv.org/abs/2102.06108

Efficient Conditional GAN Transfer with Knowledge Propagation across Classes https://github.com/mshahbazi72/cGANTransfer

Image Completion via Inference in Deep Generative Models https://arxiv.org/abs/2102.12037

2020.12 Improved StyleGAN Embedding: Where are the Good Latents? https://arxiv.org/abs/2012.09036

Attribute-Guided Adversarial Training for Robustness to Natural Perturbations https://arxiv.org/abs/2012.01806

StrokeGAN: Reducing Mode Collapse in Chinese Font Generation via Stroke Encoding https://arxiv.org/abs/2012.08687 可用于手写文字生成

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation https://arxiv.org/abs/2102.12593

Do Generative Models Know Disentanglement? Contrastive Learning is All You Need https://arxiv.org/abs/2102.10543 https://github.com/xrenaa/DisCo

Delip Rao:生成式深度学习中,如果模型效果好,那它就是“产品(product)”,如果效果不好,那它就是“艺术(art)”。 ​​​​

Pytorch implementation of the TIP paper, Towards Unsupervised Deep Image Enhancement with Generative Adversarial Network https://github.com/eezkni/UEGAN

Monster Mash: New Sketch-Based Modeling and Animation Tool

https://github.com/google/monster-mash

Generative Adversarial Transformers

https://arxiv.org/abs/2103.01209 https://github.com/dorarad/gansformer

Training Generative Adversarial Networks in One Stage https://www.arxiv-vanity.com/papers/2103.00430/

House-GAN++: Generative Adversarial Layout Refinement Networks https://www.arxiv-vanity.com/papers/2103.02574

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training

Anycost GANs for Interactive Image Synthesis and Editing github.com/mit-han-lab/anycost-gan

Repurposing GANs for One-shot Semantic Part Segmentation https://www.arxiv-vanity.com/papers/2103.04379

One-Shot GAN: Learning to Generate Samples from Single Images and Videos https://www.arxiv-vanity.com/papers/2103.13389

《CoMoGAN: continuous model-guided image-to-image translation》(CVPR 2021)

github.com/cv-rits/CoMoGAN

《Training GANs with Stronger Augmentations via Contrastive Discriminator》(ICLR 2021) github.com/jh-jeong/ContraD

Few-shot Semantic Image Synthesis Using StyleGAN Prior https://www.arxiv-vanity.com/papers/2103.14877

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery github.com/orpatashnik/StyleCLIP

AE自编码器/GAN生成对抗网络入门学习资源 github.com/YixinChen-AI/CVAE-GAN-zoos-PyTorch-Beginner

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement https://www.arxiv-vanity.com/papers/2104.02699

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis

github.com/bes-dev/MobileStyleGAN.pytorch github.com/bes-dev/random_face

mmgeneration:基于PyTorch和MMCV的强大生成模型工具包,尤其是最新的GAN github.com/open-mmlab/mmgeneration

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort https://www.arxiv-vanity.com/papers/2104.06490

Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis https://www.arxiv-vanity.com/papers/2104.05703

Training Generative Adversarial Networks with Limited Data (NeurIPS 2020) github.com/dvschultz/stylegan2-ada-pytorch

《Swapping Autoencoder for Deep Image Manipulation》(NeurIPS 2020) github.com/taesungp/swapping-autoencoder-pytorch

《Few-shot Image Generation via Cross-domain Correspondence》(CVPR 2021) github.com/utkarshojha/few-shot-gan-adaptation

《Bayesian Image Reconstruction using Deep Generative Models》(2021) github.com/razvanmarinescu/brgm

《Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis》(ICLR 2021)

github.com/odegeasslbc/FastGAN-pytorch

SceneFormer: Indoor Scene Generation with Transformers (2020) github.com/cy94/sceneformer

EigenGAN: Layer-Wise Eigen-Learning for GANs (2021) https://www.arxiv-vanity.com/papers/2104.12476 github.com/LynnHo/EigenGAN-Tensorflow

Lightning GAN Zoo :基于Pytorch Lightning & Hydra的各种GAN实现 github.com/ebartrum/lightning_gan_zoo

StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing

https://www.arxiv-vanity.com/papers/2104.14754/ https://github.com/naver-ai/StyleMapGAN

Explaining in Style: Training a GAN to explain a classifier in StyleSpace https://www.arxiv-vanity.com/papers/2104.13369

A Good Image Generator Is What You Need for High-Resolution Video Synthesis github.com/snap-research/MoCoGAN-HD

Dual Contrastive Learning for Unsupervised Image-to-Image Translation (CVPR 2021)

github.com/JunlinHan/DCLGAN

《Learning Semantic Person Image Generation by Region-Adaptive Normalization》(CVPR 2021) github.com/cszy98/SPGNet

《GAN Memory with No Forgetting》(NeurIPS 2020) github.com/MiaoyunZhao/GANmemory_LifelongLearning

《Noise Robust Generative Adversarial Networks》(CVPR 2020) github.com/takuhirok/NR-GAN

《EigenGAN: Layer-Wise Eigen-Learning for GANs》(2021) github.com/bryandlee/eigengan-pytorch

《Generative Models as Distributions of Functions》(2021) github.com/EmilienDupont/neural-function-distributions

Pivotal Tuning for Latent-based Editing of Real Images github.com/danielroich/PTI

《Text to Image Generation with Semantic-Spatial Aware GAN》(2021) github.com/wtliao/text2image

Improved Transformer for High-Resolution GANs https://www.arxiv-vanity.com/papers/2106.07631

《TransGAN: Two Transformers Can Make One Strong GAN》(2021) github.com/lucidrains/transganformer

用正确的方式训练GAN #TODO https://beckham.nz/2021/06/28/training-gans.html

VQGAN-CLIP:本地运行版VQGAN+CLIP github.com/nerdyrodent/VQGAN-CLIP

Keras实例:Conditional GAN https://keras.io/examples/generative/conditional_gan/

《Fine-Tuning StyleGAN2 For Cartoon Face Generation》(2021) github.com/happy-jihye/Cartoon-StyleGan2

Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization https://arxiv.org/abs/2107.12580

(Colab) 用VQGAN + CLIP创建逼真的生成图像 https://colab.research.google.com/drive/1wkF67ThUz37T2_oPIuSwuO4e_-0vjaLs?usp=sharing

Online Multi-Granularity Distillation for GAN Compression github.com/bytedance/OMGD

GAN Inversion for Out-of-Range Images with Geometric Transformations https://arxiv.org/abs/2108.08998

Instance-Conditioned GAN 实例条件GAN:用AI生成未见过事物的图像 https://arxiv.org/abs/2109.05070 https://ai.facebook.com/blog/instance-conditioned-gans/

Unaligned Image-to-Image Translation by Learning to Reweight github.com/Mid-Push/IrwGAN

《CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis》

github.com/PeterouZh/CIPS-3D

Self-Supervised Object Detection via Generative Image Synthesis》 github.com/NVlabs/SSOD

《ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods》 github.com/cc-ai/mila-simulated-floods

Synthesizing and manipulating 2048x1024 images with conditional GANs https://github.com/NVIDIA/pix2pixHD

Keras实例教程:基于自适应鉴别器增强的数据高效GAN https://keras.io/examples/generative/gan_ada/

《StyleGAN of All Trades: Image Manipulation with Only Pretrained StyleGAN》 github.com/mchong6/SOAT

Instance-Conditioned GAN github.com/facebookresearch/ic_gan

StyleCLIPDraw:风格化文本-绘画合成 github.com/pschaldenbrand/StyleCLIPDraw

Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training github.com/POSTECH-CVLab/PyTorch-StudioGAN

用EditGAN实现高精度图像语义编辑 nv-tlabs.github.io/editGAN/

GAN Inversion: A Survey github.com/weihaox/awesome-gan-inversion

text2art:基于VQGAN + CLIP & CLIPDrawer的文本到艺术生成 github.com/mfrashad/text2art

ProsePainter:用文字绘画,按你的描述自动生成绘画 github.com/Morphogens/ProsePainter

StyleSwin: Transformer-based GAN for High-resolution Image Generation github.com/microsoft/StyleSwin

InterfaceGAN++: Exploring the limits of InterfaceGAN ithub.com/younesbelkada/interfacegan

MaskGIT: Masked Generative Image Transformer https://arxiv.org/abs/2202.04200

State-of-the-Art in the Architecture, Methods and Applications of StyleGAN https://arxiv.org/abs/2202.14020

浏览器里的GAN试炼场 poloclub.github.io/ganlab/

One-Shot Adaptation of GAN in Just One CLIP https://arxiv.org/abs/2203.09301

[CV]《Rewriting Geometric Rules of a GAN》S Wang, D Bau, J Zhu [CMU & Northeastern University] (2022) https://arxiv.org/abs/2207.14288

[CV]《3D Cartoon Face Generation with Controllable Expressions from a Single GAN Image》H Wang, G Lin, S C. H. Hoi, C Miao [Nanyang Technological University & Singapore Management University] (2022) https://arxiv.org/abs/2207.14425

[CV]《Generator Knows What Discriminator Should Learn in Unconditional GANs》G Lee, H Kim, J Kim, S Kim, J Ha, Y Choi [NAVER AI Lab] (2022) https://arxiv.org/abs/2207.13320

【Awesome AI image synthesis:AI图像合成相关资源大列表】’Awesome AI image synthesis - A list of awesome tools, ideas, prompt engineering tools, colabs, models, and helpers for the prompt designer playing with aiArt and image synthesis. Covers Dalle2, MidJourney, StableDiffusion, and open source tools.' by altryne GitHub: github.com/altryne/awesome-ai-art-image-synthesis