-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathchallenge.py
434 lines (356 loc) · 17.2 KB
/
challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
"""
Implementation of functions supporting metrics calculation, late fusion, and challenge file creation.
Most of the code are modified from AVT repo.
"""
import glob
import numpy as np
import os
import os.path as osp
import h5py
import pandas as pd
from scipy.special import softmax
import hydra
import logging
from tqdm import tqdm
import json
import subprocess
from numpyencoder import NumpyEncoder
import bisect
import argparse
from common.utils import topk_recall, topk_accuracy
EGTEA_VERSION = -1
EPIC55_VERSION = 0.1
EPIC100_VERSION = 0.2
LOGITS_DIR = 'logits'
DATASET_EVAL_CFG_KEY = 'dataset_eval'
DATASET_EVAL_CFG_KEY_SUFFIX = ''
PREFIX_H5 = 'test'
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--prefix_h5, type=str', default='test', required=True, choices=['test', 'val'],
help='Prefix of h5 file to be selected')
parser.add_argument('--models', type=str, nargs='+', required=True, help='List of models to be selected')
parser.add_argument('--weights', type=str, nargs='+', required=True, help='List of weights for selected models')
args = parser.parse_args()
return args
def _get_dataset():
with hydra.initialize(config_path='conf'):
cfg = hydra.compose(config_name='config.yaml', return_hydra_config=True, overrides=['cwd="."'])
# set reader fn as an empty dict, as otherwise the code will not work
# will not affect performance, since only the action to verb / noun mapping matrix saved in dataset object will be used
setattr(getattr(cfg, DATASET_EVAL_CFG_KEY), 'reader_fn', {})
if 'test' in PREFIX_H5:
if not any('test' in path for path in getattr(cfg, DATASET_EVAL_CFG_KEY).annotation_path):
logging.warning('"epic_kitchens100/test" was not set in config.yaml,'
'change annotation path to load test annotations')
# for test, we only need to change root and annotation path
annotation_path = ['${dataset.epic_kitchens100.common.annot_dir}/EPIC_100_test_timestamps.pkl']
setattr(getattr(cfg, DATASET_EVAL_CFG_KEY), 'annotation_path', annotation_path)
dataset = hydra.utils.instantiate(getattr(cfg, DATASET_EVAL_CFG_KEY), _recursive_=False)
return dataset
def allkeys(obj, keys=[]):
"""Recursively find all leaf keys in h5. """
keys = []
for key in obj.keys():
if isinstance(obj[key], h5py.Group):
keys += [f'{key}/{el}' for el in allkeys(obj[key])]
else:
keys.append(key)
return keys
def gen_load_resfiles(resdir):
resfiles = glob.glob(osp.join(resdir, PREFIX_H5 + '*h5'))
if len(resfiles) == 0:
raise ValueError(f'Didnt find any resfiles in {resdir}')
for resfile in resfiles:
output_dict = {}
with h5py.File(resfile, 'r') as fin:
for key in allkeys(fin):
try:
output_dict[key] = fin[key][()]
except AttributeError as err:
logging.warning('Unable to load %s (%s)', key, err)
yield output_dict
def compute_accuracy(predictions, labels, classes=None):
"""
Args:
predictions: (B, C) logits
labels: (B, )
classes: OrderedDict[name (str), cls_id (int)]
"""
if classes is not None:
classes = list(classes.values())
top_1, top_5 = topk_accuracy(predictions, labels, ks=(1, 5))
mt5r = topk_recall(predictions, labels, k=5, classes=classes)
return top_1 * 100, top_5 * 100, mt5r * 100
def epic100_unseen_tail_eval(probs, dataset):
""" Computes metrics for unseen kitchens and tail classes
:param probs: list of predictions verb, noun and action
:param dataset: dataset object
:return:
"""
# based on https://github.com/fpv-iplab/rulstm/blob/d44612e4c351ff668f149e2f9bc870f1e000f113/RULSTM/main.py#L379
unseen_participants_ids = pd.read_csv(
osp.join(dataset.rulstm_annotation_dir, 'validation_unseen_participants_ids.csv'),
names=['ids'], squeeze=True)
tail_verbs_ids = pd.read_csv(
osp.join(dataset.rulstm_annotation_dir, 'validation_tail_verbs_ids.csv'),
names=['id'], squeeze=True)
tail_nouns_ids = pd.read_csv(
osp.join(dataset.rulstm_annotation_dir, 'validation_tail_nouns_ids.csv'),
names=['id'], squeeze=True)
tail_actions_ids = pd.read_csv(
osp.join(dataset.rulstm_annotation_dir, 'validation_tail_actions_ids.csv'),
names=['id'], squeeze=True)
unseen_bool_idx = dataset.df.narration_id.isin(unseen_participants_ids).values
tail_verbs_bool_idx = dataset.df.narration_id.isin(tail_verbs_ids).values
tail_nouns_bool_idx = dataset.df.narration_id.isin(tail_nouns_ids).values
tail_actions_bool_idx = dataset.df.narration_id.isin(tail_actions_ids).values
# For tail
_, _, vmt5r_tail = compute_accuracy(
probs[0][tail_verbs_bool_idx], dataset.df.verb_class.values[tail_verbs_bool_idx])
_, _, nmt5r_tail = compute_accuracy(
probs[1][tail_nouns_bool_idx], dataset.df.noun_class.values[tail_nouns_bool_idx])
_, _, amt5r_tail = compute_accuracy(
probs[2][tail_actions_bool_idx], dataset.df.action_class.values[tail_actions_bool_idx])
# For unseen
_, _, vmt5r_unseen = compute_accuracy(
probs[0][unseen_bool_idx], dataset.df.verb_class.values[unseen_bool_idx])
_, _, nmt5r_unseen = compute_accuracy(
probs[1][unseen_bool_idx], dataset.df.noun_class.values[unseen_bool_idx])
_, _, amt5r_unseen = compute_accuracy(
probs[2][unseen_bool_idx], dataset.df.action_class.values[unseen_bool_idx])
res = {
'vmt5r_tail': vmt5r_tail, 'nmt5r_tail': nmt5r_tail, 'amt5r_tail': amt5r_tail,
'vmt5r_unseen': vmt5r_unseen, 'nmt5r_unseen': nmt5r_unseen, 'amt5r_unseen': amt5r_unseen
}
return res
def compute_accuracies_epic(probs, dataset, compute_manyshot_unseen_tail=False):
""" Computes top1, top5 and mt5r for verb, noun and action
:param probs: list of predictions verb, noun and action
:param dataset: dataset object
:return:
"""
assert len(probs) == 3, f'Probs should contain probs for verb, noun and action'
manyshot_classes = dataset.classes_manyshot
vtop1, vtop5, vmt5r = compute_accuracy(probs[0], dataset.df.verb_class.values)
vmt5r_ms, nmt5r_ms, amt5r_ms = float('nan'), float('nan'), float('nan')
if 'verb' in manyshot_classes and compute_manyshot_unseen_tail:
_, _, vmt5r_ms = compute_accuracy(probs[0], dataset.df.verb_class.values,
classes=manyshot_classes['verb'])
ntop1, ntop5, nmt5r = compute_accuracy(probs[1], dataset.df.noun_class.values)
if 'noun' in manyshot_classes and compute_manyshot_unseen_tail:
_, _, nmt5r_ms = compute_accuracy(probs[1], dataset.df.noun_class.values,
classes=manyshot_classes['noun'])
atop1, atop5, am5tr = compute_accuracy(probs[2], dataset.df.action_class.values)
if 'action' in manyshot_classes and compute_manyshot_unseen_tail:
_, _, amt5r_ms = compute_accuracy(probs[2], dataset.df.action_class.values,
classes=manyshot_classes['action'])
res = {'vtop1': vtop1, 'vtop5': vtop5, 'vmt5r': vmt5r, 'vmt5r_ms': vmt5r_ms,
'ntop1': ntop1, 'ntop5': ntop5, 'nmt5r': nmt5r, 'nmt5r_ms': nmt5r_ms,
'atop1': atop1, 'atop5': atop5, 'amt5r': am5tr, 'amt5r_ms': amt5r_ms}
if dataset.version == EPIC100_VERSION and compute_manyshot_unseen_tail:
res.update(epic100_unseen_tail_eval(probs, dataset))
return res
def marginalize_verb_noun(res_action, dataset, to_prob=True, compute_manyshot_unseen_tail=False):
"""The logits are first transformed into probabilities if to_prob is true"""
res_action_probs = softmax(res_action, axis=-1) if to_prob else res_action
# Marginalize the other dimension, using the mapping matrices store in the dataset obj
res_verb = np.matmul(res_action_probs, dataset.class_mappings[('verb', 'action')]).numpy()
res_noun = np.matmul(res_action_probs, dataset.class_mappings[('noun', 'action')]).numpy()
# compute top1, top5 and mt5r metrics
accuracies = compute_accuracies_epic([res_verb, res_noun, res_action], dataset, compute_manyshot_unseen_tail)
# Returning the actual scores for actions instead of the probs.
# AVT ICCV'21 and Sener et al. ECCV'20 do the same
scores = [res_verb, res_noun, res_action]
return accuracies, scores
def get_epic_marginalize_verb_noun(resdir, dataset):
"""Computes scores for verb and noun based on action scores"""
res = next(gen_load_resfiles(resdir))
res_action = None
for key, val in res.items():
if key.startswith('logits/action'):
res_action = val
assert res_action is not None, 'Can not find logits/action in h5.'
return marginalize_verb_noun(res_action, dataset)
def print_accuracies_epic(metrics: dict, prefix: str = ''):
print(f"[{prefix}] Accuracies verb/noun/action: "
f"{metrics['vtop1']:.1f} {metrics['vtop5']:.1f} "
f"{metrics['ntop1']:.1f} {metrics['ntop5']:.1f} "
f"{metrics['atop1']:.1f} {metrics['atop5']:.1f} ")
print(f"[{prefix}] Mean top 5 verb/noun/action: "
f"{metrics['vmt5r']:.1f} {metrics['nmt5r']:.1f} {metrics['amt5r']:.1f} ")
print(f"[{prefix}] Mean top 5 many shot verb/noun/action: "
f"{metrics['vmt5r_ms']:.1f} {metrics['nmt5r_ms']:.1f} {metrics['amt5r_ms']:.1f} ")
if 'vmt5r_tail' in metrics:
# assuming the others for tail/unseen will be in there too, since
# they are all computed at one place for ek100
print(f"[{prefix}] Mean top 5 tail verb/noun/action: "
f"{metrics['vmt5r_tail']:.1f} {metrics['nmt5r_tail']:.1f} {metrics['amt5r_tail']:.1f} ")
print(f"[{prefix}] Mean top 5 unseen verb/noun/action: "
f"{metrics['vmt5r_unseen']:.1f} {metrics['nmt5r_unseen']:.1f} {metrics['amt5r_unseen']:.1f} ")
def _concat_with_uids(scores, dataset, uid_key):
# Make a dict with the IDs from the dataset
# There will be 3 elements in scores -- verb, noun, action
return [
dict(zip([str(el) for el in dataset.df[uid_key].values], scores_per_space))
for scores_per_space in scores
]
def _normalize_scores(scores, p):
"""This brings the scores between 0 to 1, and normalizes by """
res = []
for scores_per_space in scores:
res.append({
uid: val / (np.linalg.norm(val, ord=p, axis=-1) + 0.000001)
for uid, val in scores_per_space.items()
})
return res
def contains_list_or_tuple(test_list):
"""check whether a list contains another list"""
for element in test_list:
if isinstance(element, list) or isinstance(element, tuple):
return True
return False
def read_all_single_models(resdirs, uid_key='narration_id', normalize_before_combine=None):
all_scores = []
for resdir in resdirs:
accuracies, scores = get_epic_marginalize_verb_noun(resdir, dataset)
scores = _concat_with_uids(scores, dataset, uid_key)
print_accuracies_epic(accuracies, prefix=resdir)
# Normalize if required (AVT does not normalize)
if normalize_before_combine is not None:
scores = _normalize_scores(scores, p=normalize_before_combine)
logging.info(f'Adding scores from {resdir}')
all_scores.append(scores)
return all_scores
def get_epic_marginalize_late_fuse(resdirs, weights=1.0, mp_best_weights=[], n_best=5, uid_key='narration_id'):
"""
Args:
normalize_before_combine: Set to non-None to normalize the features by that p-norm,
and then combine. So the weights would have to be defined w.r.t normalized features.
"""
if not isinstance(resdirs, list):
resdirs = [resdirs]
# convert weights to list of lists, make ensemble run quicker if we have to test multiple weights
if isinstance(weights, float):
weights = [[weights] * len(resdirs)]
else:
if not contains_list_or_tuple(weights) and not isinstance(weights, np.ndarray): # list of floats
assert len(weights) == len(resdirs)
weights = [weights]
else: # list of lists
assert all([len(weight) == len(resdirs) for weight in weights])
logging.info(f'Loading {len(weights)} weights combinations.')
all_scores = read_all_single_models(resdirs)
for weight in tqdm(weights):
combined = []
for space_id in range(3): # verb/noun/action
scores_for_space = [scores[space_id] for scores in all_scores]
# Take the union of all the UIDs we have score for
total_uids = set.union(*[set(el.keys()) for el in scores_for_space])
logging.info('Combined UIDs: %d. UIDs in the runs %s', len(total_uids),
[len(el.keys()) for el in scores_for_space])
combined_for_space = {}
for uid in total_uids:
combined_for_space[uid] = []
for run_id, scores_for_space_per_run in enumerate(scores_for_space):
if uid in scores_for_space_per_run:
combined_for_space[uid].append(
scores_for_space_per_run[uid] * weight[run_id])
combined_for_space[uid] = np.sum(np.stack(combined_for_space[uid]),
axis=0)
combined.append(combined_for_space)
# Now to compute accuracies, need to convert back to np arrays from dict.
# Would only work for parts that are in the dataset
combined_np = []
for combined_for_space in combined:
combined_np.append(
np.array([
combined_for_space[str(uid)]
for uid in dataset.df[uid_key].values
]))
accuracies = compute_accuracies_epic(combined_np, dataset)
print_accuracies_epic(accuracies, prefix=f'combined with {weight}')
# update best weights list
metric = accuracies['amt5r']
if len(mp_best_weights) == 0 or metric > mp_best_weights[0][0]:
try:
bisect.insort(mp_best_weights, (metric, weight))
except:
print('mp_best_weights: ', mp_best_weights)
print('metric: ', metric)
print('weight', weight)
if len(mp_best_weights) > n_best:
mp_best_weights.pop(0)
return accuracies, combined, dataset
def get_struct_outputs_per_dataset(resdirs, weights, uid_key='narration_id'):
_, combined, dataset = get_epic_marginalize_late_fuse(
resdirs, weights, uid_key=uid_key)
results = {}
action_to_verb_noun = {
val: key
for key, val in dataset.verb_noun_to_action.items()
}
for uid in tqdm(combined[0].keys(), desc='Computing res'):
verb_res = {f'{j}': val for j, val in enumerate(combined[0][uid])}
noun_res = {f'{j}': val for j, val in enumerate(combined[1][uid])}
top_100_actions = sorted(np.argpartition(combined[2][uid], -100)[-100:],
key=lambda x: -combined[2][uid][x])
action_res = {
','.join((str(el) for el in action_to_verb_noun[j])): combined[2][uid][j]
for j in top_100_actions
}
results[f'{uid}'] = {
'verb': verb_res,
'noun': noun_res,
'action': action_res,
}
# Add in all the discarded dfs with uniform distribution
if dataset.discarded_df is not None:
for _, row in dataset.discarded_df.iterrows():
if str(row[uid_key]) in results:
continue
results[f'{row[uid_key]}'] = {
'verb':
{f'{j}': 0.0
for j in range(len(dataset.verb_classes))},
'noun':
{f'{j}': 0.0
for j in range(len(dataset.noun_classes))},
'action': {f'0,{j}': 0.0
for j in range(100)},
}
output_dict = {
'version': f'{dataset.version}',
'challenge': dataset.challenge_type,
'results': results
}
return output_dict
def package_results_for_submission_ek100(resdirs, weights, sls=[1, 4, 3]):
res = get_struct_outputs_per_dataset(resdirs, weights, uid_key='narration_id')
res['sls_pt'] = sls[0]
res['sls_tl'] = sls[1]
res['sls_td'] = sls[2]
# write it out in the first run's output dir
output_dir = LOGITS_DIR
print(f'Saving outputs to {output_dir}')
os.makedirs(output_dir, exist_ok=True)
with open(osp.join(output_dir, 'test.json'), 'w') as fout:
json.dump(res, fout, indent=4, cls=NumpyEncoder)
subprocess.check_output(f'zip -j {output_dir}/submit.zip {output_dir}/test.json ', shell=True)
print('Successful!!!')
def generate_test_json(args):
models = args.models
weights = args.weights
if not isinstance(models, list):
models = [models]
if not isinstance(weights, list):
weights = [weights]
resdirs = [os.path.join(LOGITS_DIR, dir) for dir in models]
weights = [float(weight) for weight in weights]
package_results_for_submission_ek100(resdirs, weights)
if __name__ == '__main__':
args = parse_args()
dataset = _get_dataset()
generate_test_json(args)