-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhooks.py
356 lines (280 loc) · 13.3 KB
/
hooks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import torch
from torch import nn as nn
from torch.nn import functional as F
from clip.model import QuickGELU
from pytorch_pretrained_vit.transformer import MultiHeadedSelfAttention, PositionWiseFeedForward
import random
# GENERIC HOOKS
def fix_random_seed(seed: int = 6247423):
import torch
import numpy as np
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(seed)
np.random.seed(seed)
class ItemIterator:
@property
def iterator_item(self):
raise NotImplementedError
def __iter__(self):
return iter(self.iterator_item)
def __getitem__(self, item):
print(self.iterator_item)
return self.iterator_item[item]
def __len__(self):
return len(self.iterator_item)
class BasicHook:
def __init__(self, module: nn.Module):
self.hook = module.register_forward_hook(self.base_hook_fn)
self.activations = None
def close(self):
self.hook.remove()
def base_hook_fn(self, model: nn.Module, input_t: torch.tensor, output_t: torch.tensor):
x = input_t
x = x[0][0] if isinstance(x[0], tuple) else x[0]
return self.hook_fn(model, x)
def hook_fn(self, model: nn.Module, x: torch.tensor):
raise NotImplementedError
class HookHolder(ItemIterator):
def __init__(self, classifier: nn.Module, hook_class, layer_class):
self.hooks = [hook_class(m) for m in classifier.modules() if isinstance(m, layer_class)]
@property
def iterator_item(self):
return self.hooks
def check_for_attr(self, attr: str, hook_class):
for h in self:
if not hasattr(h, attr):
raise AttributeError('Class {} does not have attribute {}'.format(hook_class.__name__, attr))
def _broadcast(self, func_name: str, *to_propagate):
for i in self:
func = getattr(i, func_name)
func(*to_propagate)
def _gather(self, attr: str) -> list:
return [getattr(l, attr) for l in self]
def close(self):
self._broadcast('close')
class TimedHookHolder(HookHolder):
def __init__(self, classifier: nn.Module, hook_class, layer_class, use_fixed_random_seed: bool = False):
super().__init__(classifier, hook_class, layer_class)
if use_fixed_random_seed:
fix_random_seed()
def get_activations(self):
all_values = []
for h in self.hooks:
all_values += h.activations
return all_values
def get_layer(self, item):
all_values = sorted(self.get_activations())
return all_values[item][1]
def set_seed(self, seed: int):
self._broadcast('set_seed', seed)
def set_target(self, target: list):
self._broadcast('set_target', target)
def reset(self):
all_values = self.get_activations()
all_values = sum([v.sum() for _, v in all_values])
self._broadcast('reset')
return all_values
class ViTHook(BasicHook):
def __init__(self, module: nn.Module, return_output: bool, name: str):
super().__init__(module)
self.mode = return_output
self.name = name
def base_hook_fn(self, model: nn.Module, input_t: torch.tensor, output_t: torch.tensor):
x = input_t if not self.mode else output_t
x = x[0] if isinstance(x, tuple) else x
return self.hook_fn(model, x)
def hook_fn(self, model: nn.Module, x: torch.tensor):
self.activations = x
class LayerHook:
def __init__(self, classifier: nn.Module, layer_class, layer_depth: int, hook_cls):
self.layer = [m for m in classifier.modules() if isinstance(m, layer_class)][layer_depth]
self.hook = hook_cls(self.layer)
def __call__(self) -> torch.tensor:
return self.hook()
class FakeHookWrapper:
def __init__(self, value):
self.activations = value
class ViTAbsHookHolder(nn.Module):
pass
# GELU HOOKS for feature visualization
class ViTAttHookHolder(ViTAbsHookHolder):
def __init__(self, classifier: nn.Module, in_feat: bool = False, keys: bool = False, queries: bool = False,
values: bool = False, scores: bool = False, out_feat: bool = False, sl: slice = None):
super().__init__()
sl = slice(None, None) if sl is None else sl
self.just_save = [m for m in classifier.modules() if isinstance(m, MultiHeadedSelfAttention)]
self.attentions = self.just_save[sl]
self.in_features = [ViTHook(m, False, 'in') for m in self.attentions] if in_feat else None
self.keys = [ViTHook(a.proj_k, True, 'k') for a in self.attentions] if keys else None
self.queries = [ViTHook(a.proj_q, True, 'q') for a in self.attentions] if queries else None
self.value = [ViTHook(a.proj_v, True, 'v') for a in self.attentions] if values else None
self.score_behaviour = scores
self.out_features = [ViTHook(m, True, 'out') for m in self.attentions] if out_feat else None
# print(in_feat, keys, queries, values, out_feat)
self.model = classifier
@property
def scores(self):
# for a in self.attentions:
# a.scores = None
# return None
return [FakeHookWrapper(a.scores) for a in self.attentions] if self.score_behaviour else None
def forward(self, x: torch.tensor) -> ({}, torch.tensor):
# for a in self.just_save:
# a.scores = None
out = None
if x is not None:
out = self.model(x)
options = [self.in_features, self.keys, self.queries, self.value, self.scores, self.out_features]
options = [[o.activations for o in l] if l is not None else None for l in options]
names = ['in_feat', 'keys', 'queries', 'values', 'scores', 'out_feat']
return {n: o for n, o in zip(names, options) if o is not None}, out
class ClipGeLUHook(ViTAbsHookHolder):
def __init__(self, classifier: nn.Module, sl: slice = None):
super().__init__()
self.cl = classifier
sl = slice(None, None) if sl is None else sl
self.just_save = [m for m in classifier.modules() if isinstance(m, QuickGELU)]
self.attentions = self.just_save[sl]
self.high = [ViTHook(m, True, 'high') for m in self.attentions]
def forward(self, x: torch.tensor) -> ({}, torch.tensor):
out = self.cl(x)
options = [self.high]
options = [[o.activations.transpose(0, 1) for o in l if o.activations is not None] if l is not None else None
for l in options]
names = ['high']
return {n: o for n, o in zip(names, options) if o is not None}, out
class ViTGeLUHook(ViTAbsHookHolder):
def __init__(self, classifier: nn.Module, sl: slice = None):
super().__init__()
self.cl = classifier
sl = slice(None, None) if sl is None else sl
self.just_save = [m for m in classifier.modules() if isinstance(m, PositionWiseFeedForward)]
self.attentions = self.just_save[sl]
self.high = [ViTHook(m.fc1, True, 'high') for m in self.attentions]
def forward(self, x: torch.tensor) -> ({}, torch.tensor):
out = self.cl(x)
options = [self.high]
options = [[F.gelu(o.activations) for o in l] if l is not None else None for l in options]
names = ['high']
return {n: o for n, o in zip(names, options) if o is not None}, out
# OTHER CLIP HOOKS
class ReconstructionClipGeLUHook(ClipGeLUHook):
def forward(self, x: torch.tensor) -> torch.tensor:
_ = self.cl(x)
acts = self.high[0].activations.transpose(0, 1)
return acts
class SaliencyClipGeLUHook(ClipGeLUHook):
@torch.no_grad()
def forward(self, x: torch.tensor, l: int, f: int) -> torch.tensor:
_ = self.cl(x)
acts = self.high[l].activations.transpose(0, 1)[:, 1:, f]
return acts
class SpecialSaliencyClipGeLUHook(ClipGeLUHook):
def __init__(self, classifier: nn.Module, sl: slice = None, layer=None, feature=None):
super().__init__(classifier, sl)
# Now, `layer` and `feature` are stored as attributes of the instance
self.layer = layer
self.feature = feature
@torch.no_grad()
def forward(self, x: torch.tensor, l: int, f: int) -> torch.tensor:
_ = self.cl(x)
# Use self.layer and self.feature if they are supposed to override l and f
acts = self.high[l].activations.transpose(0, 1)[:, 1:, f]
return acts
class SimpleClipGeLUHook(ClipGeLUHook):
@torch.no_grad()
def forward(self, x: torch.tensor) -> torch.tensor:
_ = self.cl(x)
# :-1 excludes CLS token
acts = torch.cat([((l.activations.transpose(0, 1))[:, 1:, :]).mean(dim=1).float() for l in self.high
if l.activations is not None], dim=-1).clone().detach()
return acts
# ACTIVATION HOOKS
class AbsActivationHook(BasicHook):
def __init__(self, module: nn.Module, feature: int = 0, targets: list = None):
super().__init__(module)
self.activations = []
self.feature = feature
self.targets = targets
def hook_fn(self, model: nn.Module, x: torch.tensor):
raise NotImplementedError
def reset(self):
if self.activations is not None:
for _, v in self.activations:
del v
del self.activations
self.activations = []
def set_feature(self, feature: int):
self.feature = feature
def set_target(self, target: list):
self.targets = target
def __call__(self) -> torch.tensor:
if isinstance(self.activations, list):
return torch.tensor(0)
return self.activations
class ActivationHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t[:, self.feature:]
diagonal = torch.arange(min(input_t.patch_size()[:2]))
feats = input_t[diagonal, diagonal]
self.activations = feats.norm(p=2, dim=(1, 2)).mean()
class ActivationReluHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t[:, self.feature:]
input_t = torch.relu(input_t)
diagonal = torch.arange(min(input_t.size()[:2]))
feats = input_t[diagonal, diagonal]
self.activations = feats.norm(p=2, dim=(1, 2)).mean()
class TargetActivationHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t[:, self.feature:]
diagonal = torch.arange(min(input_t.patch_size()[:2]))
feats = input_t[diagonal, self.targets]
self.activations.append((datetime.now(), feats.norm(p=2, dim=(1, 2)).mean()))
class ContrastiveActivationHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t[:, self.feature:]
size = min(input_t.patch_size()[:2])
diagonal = torch.arange(size)
feats = input_t[diagonal, diagonal]
value = size * feats.norm(p=2, dim=(1, 2)).mean() - input_t[diagonal].norm(p=2, dim=(2, 3)).mean()
self.activations.append((datetime.now(), value))
class ViTCLSActivationHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t.transpose(1, 2)
input_t = input_t[:, self.feature:]
size = min(input_t.patch_size()[:2])
diagonal = torch.arange(size)
feats = input_t[diagonal, diagonal]
feats = feats[:, 0].mean() * feats.patch_size(-1)
self.activations.append((datetime.now(), feats))
class ViTMeanActivationHook(AbsActivationHook):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
input_t = input_t.transpose(1, 2)
input_t = input_t[:, self.feature:]
size = min(input_t.patch_size()[:2])
diagonal = torch.arange(size)
feats = input_t[diagonal, diagonal]
feats = feats.norm(p=2, dim=-1).mean() * 10 * 10
self.activations.append((datetime.now(), feats))
# BATCH NORM HOOKS
class BatchNormHookHookAbs(AbsActivationHook):
def hook_fn(self, model: nn.Module, x: torch.tensor):
raise NotImplementedError
@staticmethod
def get_mean_var(x: torch.tensor) -> (torch.tensor, torch.tensor):
view = x.transpose(1, 0).contiguous().view([x.patch_size(1), -1]).to('cuda:0')
return view.mean(1), view.var(1, unbiased=False)
@staticmethod
def normalize_eval(model: nn.Module, x: torch.tensor) -> torch.tensor:
extra_dim = [1] * (x.dim() - 2)
mean = model.running_mean.data.view(1, -1, *extra_dim)
var = model.running_var.data.view(1, -1, *extra_dim)
return (x - mean) / var
class MatchModelBNStatsHook(BatchNormHookHookAbs):
def hook_fn(self, model: nn.Module, input_t: torch.Tensor):
mean, var = self.get_mean_var(input_t)
cur_value = torch.norm(model.running_var.data - var, 2) + torch.norm(model.running_mean.data - mean, 2)
self.activations.append((datetime.now(), cur_value))