-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathVQA.py
283 lines (213 loc) · 10.8 KB
/
VQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import os
import math
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_vqa import XVLM
from models.tokenization_bert import BertTokenizer
from models.tokenization_roberta import RobertaTokenizer
import utils
from utils.checkpointer import Checkpointer
from utils.hdfs_io import hmkdir, hexists
from dataset.utils import collect_result
from dataset import create_dataset, create_sampler, create_loader, vqa_collate_fn
from scheduler import create_scheduler
from optim import create_optimizer
def train(model, data_loader, optimizer, tokenizer, epoch, device, scheduler, config):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
for i, (image, question, answer, weights, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image, weights = image.to(device, non_blocking=True), weights.to(device, non_blocking=True)
question_input = tokenizer(question, padding='longest', truncation=True, max_length=config['max_tokens'], return_tensors="pt").to(device)
answer_input = tokenizer(answer, padding='longest', return_tensors="pt").to(device)
loss = model(image, question_input, answer_input, train=True, k=n, weights=weights)
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config) :
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Generate VQA test result:'
print_freq = 50
result = []
answer_list = [answer+config['eos'] for answer in data_loader.dataset.answer_list]
answer_input = tokenizer(answer_list, padding='longest', return_tensors='pt').to(device)
for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device, non_blocking=True)
question_input = tokenizer(question, padding='longest', return_tensors="pt").to(device)
topk_ids, topk_probs = model(image, question_input, answer_input, train=False, k=config['k_test'])
for ques_id, topk_id, topk_prob in zip(question_id, topk_ids, topk_probs):
ques_id = int(ques_id.item())
_, pred = topk_prob.max(dim=0)
result.append({"question_id":ques_id, "answer":data_loader.dataset.answer_list[topk_id[pred]]})
return result
def calculate_acc(result_rpath, test_dataset):
gt = {}
for ann in test_dataset.ann:
if 'answer' in ann.keys():
gt[ann['question_id']] = ann['answer'].strip()
else:
return
n = 0
n_correct = 0
with open(result_rpath, 'r') as f:
for sample in json.load(f):
n += 1
index = sample['question_id']
if sample['answer'].strip() == gt[index]:
n_correct += 1
print(f"n_questions: {n}, n_correct: {n_correct}", flush=True)
if n > 0:
print(f"acc: {n_correct / n}", flush=True)
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
world_size = utils.get_world_size()
if world_size > 8:
assert hexists(args.output_hdfs) and args.output_hdfs.startswith('hdfs'), "for collect_result among nodes"
if args.bs > 0:
config['batch_size_train'] = args.bs // world_size
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
print("Creating vqa datasets")
train_dataset, vqa_test_dataset = create_dataset('vqa', config, args.evaluate)
print("Creating model")
if config['use_roberta']:
tokenizer = RobertaTokenizer.from_pretrained(config['text_encoder'])
else:
tokenizer = BertTokenizer.from_pretrained(config['text_encoder'])
print("### pad_token_id, ", vqa_test_dataset.pad_token_id)
print("### eos_token, ", vqa_test_dataset.eos_token)
config['pad_token_id'] = vqa_test_dataset.pad_token_id
config['eos'] = vqa_test_dataset.eos_token
model = XVLM(config=config)
model.load_pretrained(args.checkpoint, config, is_eval=args.evaluate)
model = model.to(device)
print("### Total Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad))
start_time = time.time()
print("### output_dir, ", args.output_dir, flush=True)
print("### output_hdfs, ", args.output_hdfs, flush=True)
if args.evaluate:
print("Start evaluating")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([vqa_test_dataset], [False], num_tasks, global_rank)
else:
samplers = [None]
test_loader = create_loader([vqa_test_dataset], samplers,
batch_size=[config['batch_size_test']],
num_workers=[4], is_trains=[False],
collate_fns=[None])[0]
vqa_result = evaluation(model, test_loader, tokenizer, device, config)
result_rpath = collect_result(vqa_result, 'vqa_eval', local_wdir=args.result_dir,
hdfs_wdir=args.output_hdfs,
write_to_hdfs=world_size > 8, save_result=True)
# calculate accuracy
if utils.is_main_process():
calculate_acc(result_rpath, vqa_test_dataset)
else:
print("Start training")
datasets = [train_dataset, vqa_test_dataset]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
else:
samplers = [None, None]
train_dataset_size = len(train_dataset)
world_size = utils.get_world_size()
if utils.is_main_process():
print(f"### data {train_dataset_size}, batch size, {config['batch_size_train']} x {world_size}")
train_loader, test_loader = create_loader(datasets, samplers,
batch_size=[config['batch_size_train'], config['batch_size_test']],
num_workers=[4, 4], is_trains=[True, False],
collate_fns=[vqa_collate_fn, None])
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
arg_sche['step_per_epoch'] = math.ceil(train_dataset_size / (config['batch_size_train'] * world_size))
lr_scheduler = create_scheduler(arg_sche, optimizer)
checkpointer = Checkpointer(args.output_hdfs if hexists(args.output_hdfs) else args.output_dir)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
max_epoch = config['schedular']['epochs']
for epoch in range(start_epoch, max_epoch):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, device, lr_scheduler, config)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
model_without_ddp = model
if hasattr(model, 'module'):
model_without_ddp = model.module
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
# 'epoch': epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch=epoch,
training_states=optimizer.state_dict())
if epoch >= config['start_eval']:
vqa_result = evaluation(model, test_loader, tokenizer, device, config)
result = collect_result(vqa_result, 'vqa_result_epoch%d' % epoch, local_wdir=args.result_dir, hdfs_wdir=args.output_hdfs,
write_to_hdfs=world_size > 8, save_result=True)
dist.barrier()
os.system(f"cat {args.output_dir}/log.txt")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('### Time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--config', default='./configs/VQA.yaml')
parser.add_argument('--output_dir', default='output/vqa')
parser.add_argument('--output_hdfs', type=str, default='', help="to collect eval results among nodes")
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', action='store_false')
parser.add_argument('--bs', default=-1, type=int)
parser.add_argument('--evaluate', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
args.result_dir = os.path.join(args.output_dir, 'result')
hmkdir(args.output_dir)
hmkdir(args.result_dir)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
if len(args.output_hdfs):
hmkdir(args.output_hdfs)
main(args, config)