-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathcircuit.rs
1213 lines (1068 loc) · 43.4 KB
/
circuit.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! The Orchard Action circuit implementation.
use core::fmt;
use group::{Curve, GroupEncoding};
use halo2_proofs::{
circuit::{floor_planner, Layouter, Value},
plonk::{
self, Advice, BatchVerifier, Column, Constraints, Expression, Instance as InstanceColumn,
Selector, SingleVerifier,
},
poly::Rotation,
transcript::{Blake2bRead, Blake2bWrite},
};
use memuse::DynamicUsage;
use pasta_curves::{arithmetic::CurveAffine, pallas, vesta};
use rand::RngCore;
use self::{
commit_ivk::{CommitIvkChip, CommitIvkConfig},
gadget::{
add_chip::{AddChip, AddConfig},
assign_free_advice,
},
note_commit::{NoteCommitChip, NoteCommitConfig},
};
use crate::{
builder::SpendInfo,
constants::{
OrchardCommitDomains, OrchardFixedBases, OrchardFixedBasesFull, OrchardHashDomains,
MERKLE_DEPTH_ORCHARD,
},
keys::{
CommitIvkRandomness, DiversifiedTransmissionKey, NullifierDerivingKey, SpendValidatingKey,
},
note::{
commitment::{NoteCommitTrapdoor, NoteCommitment},
nullifier::Nullifier,
ExtractedNoteCommitment, Note,
},
primitives::redpallas::{SpendAuth, VerificationKey},
spec::NonIdentityPallasPoint,
tree::{Anchor, MerkleHashOrchard},
value::{NoteValue, ValueCommitTrapdoor, ValueCommitment},
};
use halo2_gadgets::{
ecc::{
chip::{EccChip, EccConfig},
FixedPoint, NonIdentityPoint, Point, ScalarFixed, ScalarFixedShort, ScalarVar,
},
poseidon::{primitives as poseidon, Pow5Chip as PoseidonChip, Pow5Config as PoseidonConfig},
sinsemilla::{
chip::{SinsemillaChip, SinsemillaConfig},
merkle::{
chip::{MerkleChip, MerkleConfig},
MerklePath,
},
},
utilities::lookup_range_check::LookupRangeCheckConfig,
};
mod commit_ivk;
pub mod gadget;
mod note_commit;
/// Size of the Orchard circuit.
const K: u32 = 11;
// Absolute offsets for public inputs.
const ANCHOR: usize = 0;
const CV_NET_X: usize = 1;
const CV_NET_Y: usize = 2;
const NF_OLD: usize = 3;
const RK_X: usize = 4;
const RK_Y: usize = 5;
const CMX: usize = 6;
const ENABLE_SPEND: usize = 7;
const ENABLE_OUTPUT: usize = 8;
/// Configuration needed to use the Orchard Action circuit.
#[derive(Clone, Debug)]
pub struct Config {
primary: Column<InstanceColumn>,
q_orchard: Selector,
advices: [Column<Advice>; 10],
add_config: AddConfig,
ecc_config: EccConfig<OrchardFixedBases>,
poseidon_config: PoseidonConfig<pallas::Base, 3, 2>,
merkle_config_1: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
merkle_config_2: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_1:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_2:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
commit_ivk_config: CommitIvkConfig,
old_note_commit_config: NoteCommitConfig,
new_note_commit_config: NoteCommitConfig,
}
/// The Orchard Action circuit.
#[derive(Clone, Debug, Default)]
pub struct Circuit {
pub(crate) path: Value<[MerkleHashOrchard; MERKLE_DEPTH_ORCHARD]>,
pub(crate) pos: Value<u32>,
pub(crate) g_d_old: Value<NonIdentityPallasPoint>,
pub(crate) pk_d_old: Value<DiversifiedTransmissionKey>,
pub(crate) v_old: Value<NoteValue>,
pub(crate) rho_old: Value<Nullifier>,
pub(crate) psi_old: Value<pallas::Base>,
pub(crate) rcm_old: Value<NoteCommitTrapdoor>,
pub(crate) cm_old: Value<NoteCommitment>,
pub(crate) alpha: Value<pallas::Scalar>,
pub(crate) ak: Value<SpendValidatingKey>,
pub(crate) nk: Value<NullifierDerivingKey>,
pub(crate) rivk: Value<CommitIvkRandomness>,
pub(crate) g_d_new: Value<NonIdentityPallasPoint>,
pub(crate) pk_d_new: Value<DiversifiedTransmissionKey>,
pub(crate) v_new: Value<NoteValue>,
pub(crate) psi_new: Value<pallas::Base>,
pub(crate) rcm_new: Value<NoteCommitTrapdoor>,
pub(crate) rcv: Value<ValueCommitTrapdoor>,
}
impl Circuit {
/// This constructor is public to enable creation of custom builders.
/// If you are not creating a custom builder, use [`Builder`] to compose
/// and authorize a transaction.
///
/// Constructs a `Circuit` from the following components:
/// - `spend`: [`SpendInfo`] of the note spent in scope of the action
/// - `output_note`: a note created in scope of the action
/// - `alpha`: a scalar used for randomization of the action spend validating key
/// - `rcv`: trapdoor for the action value commitment
///
/// Returns `None` if the `rho` of the `output_note` is not equal
/// to the nullifier of the spent note.
///
/// [`SpendInfo`]: crate::builder::SpendInfo
/// [`Builder`]: crate::builder::Builder
pub fn from_action_context(
spend: SpendInfo,
output_note: Note,
alpha: pallas::Scalar,
rcv: ValueCommitTrapdoor,
) -> Option<Circuit> {
(spend.note.nullifier(&spend.fvk) == output_note.rho())
.then(|| Self::from_action_context_unchecked(spend, output_note, alpha, rcv))
}
pub(crate) fn from_action_context_unchecked(
spend: SpendInfo,
output_note: Note,
alpha: pallas::Scalar,
rcv: ValueCommitTrapdoor,
) -> Circuit {
let sender_address = spend.note.recipient();
let rho_old = spend.note.rho();
let psi_old = spend.note.rseed().psi(&rho_old);
let rcm_old = spend.note.rseed().rcm(&rho_old);
let rho_new = output_note.rho();
let psi_new = output_note.rseed().psi(&rho_new);
let rcm_new = output_note.rseed().rcm(&rho_new);
Circuit {
path: Value::known(spend.merkle_path.auth_path()),
pos: Value::known(spend.merkle_path.position()),
g_d_old: Value::known(sender_address.g_d()),
pk_d_old: Value::known(*sender_address.pk_d()),
v_old: Value::known(spend.note.value()),
rho_old: Value::known(rho_old),
psi_old: Value::known(psi_old),
rcm_old: Value::known(rcm_old),
cm_old: Value::known(spend.note.commitment()),
alpha: Value::known(alpha),
ak: Value::known(spend.fvk.clone().into()),
nk: Value::known(*spend.fvk.nk()),
rivk: Value::known(spend.fvk.rivk(spend.scope)),
g_d_new: Value::known(output_note.recipient().g_d()),
pk_d_new: Value::known(*output_note.recipient().pk_d()),
v_new: Value::known(output_note.value()),
psi_new: Value::known(psi_new),
rcm_new: Value::known(rcm_new),
rcv: Value::known(rcv),
}
}
}
impl plonk::Circuit<pallas::Base> for Circuit {
type Config = Config;
type FloorPlanner = floor_planner::V1;
fn without_witnesses(&self) -> Self {
Self::default()
}
fn configure(meta: &mut plonk::ConstraintSystem<pallas::Base>) -> Self::Config {
// Advice columns used in the Orchard circuit.
let advices = [
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
];
// Constrain v_old - v_new = magnitude * sign (https://p.z.cash/ZKS:action-cv-net-integrity?partial).
// Either v_old = 0, or calculated root = anchor (https://p.z.cash/ZKS:action-merkle-path-validity?partial).
// Constrain v_old = 0 or enable_spends = 1 (https://p.z.cash/ZKS:action-enable-spend).
// Constrain v_new = 0 or enable_outputs = 1 (https://p.z.cash/ZKS:action-enable-output).
let q_orchard = meta.selector();
meta.create_gate("Orchard circuit checks", |meta| {
let q_orchard = meta.query_selector(q_orchard);
let v_old = meta.query_advice(advices[0], Rotation::cur());
let v_new = meta.query_advice(advices[1], Rotation::cur());
let magnitude = meta.query_advice(advices[2], Rotation::cur());
let sign = meta.query_advice(advices[3], Rotation::cur());
let root = meta.query_advice(advices[4], Rotation::cur());
let anchor = meta.query_advice(advices[5], Rotation::cur());
let enable_spends = meta.query_advice(advices[6], Rotation::cur());
let enable_outputs = meta.query_advice(advices[7], Rotation::cur());
let one = Expression::Constant(pallas::Base::one());
Constraints::with_selector(
q_orchard,
[
(
"v_old - v_new = magnitude * sign",
v_old.clone() - v_new.clone() - magnitude * sign,
),
(
"Either v_old = 0, or root = anchor",
v_old.clone() * (root - anchor),
),
(
"v_old = 0 or enable_spends = 1",
v_old * (one.clone() - enable_spends),
),
(
"v_new = 0 or enable_outputs = 1",
v_new * (one - enable_outputs),
),
],
)
});
// Addition of two field elements.
let add_config = AddChip::configure(meta, advices[7], advices[8], advices[6]);
// Fixed columns for the Sinsemilla generator lookup table
let table_idx = meta.lookup_table_column();
let lookup = (
table_idx,
meta.lookup_table_column(),
meta.lookup_table_column(),
);
// Instance column used for public inputs
let primary = meta.instance_column();
meta.enable_equality(primary);
// Permutation over all advice columns.
for advice in advices.iter() {
meta.enable_equality(*advice);
}
// Poseidon requires four advice columns, while ECC incomplete addition requires
// six, so we could choose to configure them in parallel. However, we only use a
// single Poseidon invocation, and we have the rows to accommodate it serially.
// Instead, we reduce the proof size by sharing fixed columns between the ECC and
// Poseidon chips.
let lagrange_coeffs = [
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
];
let rc_a = lagrange_coeffs[2..5].try_into().unwrap();
let rc_b = lagrange_coeffs[5..8].try_into().unwrap();
// Also use the first Lagrange coefficient column for loading global constants.
// It's free real estate :)
meta.enable_constant(lagrange_coeffs[0]);
// We have a lot of free space in the right-most advice columns; use one of them
// for all of our range checks.
let range_check = LookupRangeCheckConfig::configure(meta, advices[9], table_idx);
// Configuration for curve point operations.
// This uses 10 advice columns and spans the whole circuit.
let ecc_config =
EccChip::<OrchardFixedBases>::configure(meta, advices, lagrange_coeffs, range_check);
// Configuration for the Poseidon hash.
let poseidon_config = PoseidonChip::configure::<poseidon::P128Pow5T3>(
meta,
// We place the state columns after the partial_sbox column so that the
// pad-and-add region can be laid out more efficiently.
advices[6..9].try_into().unwrap(),
advices[5],
rc_a,
rc_b,
);
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_1, merkle_config_1) = {
let sinsemilla_config_1 = SinsemillaChip::configure(
meta,
advices[..5].try_into().unwrap(),
advices[6],
lagrange_coeffs[0],
lookup,
range_check,
);
let merkle_config_1 = MerkleChip::configure(meta, sinsemilla_config_1.clone());
(sinsemilla_config_1, merkle_config_1)
};
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_2, merkle_config_2) = {
let sinsemilla_config_2 = SinsemillaChip::configure(
meta,
advices[5..].try_into().unwrap(),
advices[7],
lagrange_coeffs[1],
lookup,
range_check,
);
let merkle_config_2 = MerkleChip::configure(meta, sinsemilla_config_2.clone());
(sinsemilla_config_2, merkle_config_2)
};
// Configuration to handle decomposition and canonicity checking
// for CommitIvk.
let commit_ivk_config = CommitIvkChip::configure(meta, advices);
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_old.
let old_note_commit_config =
NoteCommitChip::configure(meta, advices, sinsemilla_config_1.clone());
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_new.
let new_note_commit_config =
NoteCommitChip::configure(meta, advices, sinsemilla_config_2.clone());
Config {
primary,
q_orchard,
advices,
add_config,
ecc_config,
poseidon_config,
merkle_config_1,
merkle_config_2,
sinsemilla_config_1,
sinsemilla_config_2,
commit_ivk_config,
old_note_commit_config,
new_note_commit_config,
}
}
#[allow(non_snake_case)]
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<pallas::Base>,
) -> Result<(), plonk::Error> {
// Load the Sinsemilla generator lookup table used by the whole circuit.
SinsemillaChip::load(config.sinsemilla_config_1.clone(), &mut layouter)?;
// Construct the ECC chip.
let ecc_chip = config.ecc_chip();
// Witness private inputs that are used across multiple checks.
let (psi_old, rho_old, cm_old, g_d_old, ak_P, nk, v_old, v_new) = {
// Witness psi_old
let psi_old = assign_free_advice(
layouter.namespace(|| "witness psi_old"),
config.advices[0],
self.psi_old,
)?;
// Witness rho_old
let rho_old = assign_free_advice(
layouter.namespace(|| "witness rho_old"),
config.advices[0],
self.rho_old.map(|rho| rho.0),
)?;
// Witness cm_old
let cm_old = Point::new(
ecc_chip.clone(),
layouter.namespace(|| "cm_old"),
self.cm_old.as_ref().map(|cm| cm.inner().to_affine()),
)?;
// Witness g_d_old
let g_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "gd_old"),
self.g_d_old.as_ref().map(|gd| gd.to_affine()),
)?;
// Witness ak_P.
let ak_P: Value<pallas::Point> = self.ak.as_ref().map(|ak| ak.into());
let ak_P = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness ak_P"),
ak_P.map(|ak_P| ak_P.to_affine()),
)?;
// Witness nk.
let nk = assign_free_advice(
layouter.namespace(|| "witness nk"),
config.advices[0],
self.nk.map(|nk| nk.inner()),
)?;
// Witness v_old.
let v_old = assign_free_advice(
layouter.namespace(|| "witness v_old"),
config.advices[0],
self.v_old,
)?;
// Witness v_new.
let v_new = assign_free_advice(
layouter.namespace(|| "witness v_new"),
config.advices[0],
self.v_new,
)?;
(psi_old, rho_old, cm_old, g_d_old, ak_P, nk, v_old, v_new)
};
// Merkle path validity check (https://p.z.cash/ZKS:action-merkle-path-validity?partial).
let root = {
let path = self
.path
.map(|typed_path| typed_path.map(|node| node.inner()));
let merkle_inputs = MerklePath::construct(
[config.merkle_chip_1(), config.merkle_chip_2()],
OrchardHashDomains::MerkleCrh,
self.pos,
path,
);
let leaf = cm_old.extract_p().inner().clone();
merkle_inputs.calculate_root(layouter.namespace(|| "Merkle path"), leaf)?
};
// Value commitment integrity (https://p.z.cash/ZKS:action-cv-net-integrity?partial).
let v_net_magnitude_sign = {
// Witness the magnitude and sign of v_net = v_old - v_new
let v_net_magnitude_sign = {
let v_net = self.v_old - self.v_new;
let magnitude_sign = v_net.map(|v_net| {
let (magnitude, sign) = v_net.magnitude_sign();
(
// magnitude is guaranteed to be an unsigned 64-bit value.
// Therefore, we can move it into the base field.
pallas::Base::from(magnitude),
match sign {
crate::value::Sign::Positive => pallas::Base::one(),
crate::value::Sign::Negative => -pallas::Base::one(),
},
)
});
let magnitude = assign_free_advice(
layouter.namespace(|| "v_net magnitude"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.0),
)?;
let sign = assign_free_advice(
layouter.namespace(|| "v_net sign"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.1),
)?;
(magnitude, sign)
};
let v_net = ScalarFixedShort::new(
ecc_chip.clone(),
layouter.namespace(|| "v_net"),
v_net_magnitude_sign.clone(),
)?;
let rcv = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rcv"),
self.rcv.as_ref().map(|rcv| rcv.inner()),
)?;
let cv_net = gadget::value_commit_orchard(
layouter.namespace(|| "cv_net = ValueCommit^Orchard_rcv(v_net)"),
ecc_chip.clone(),
v_net,
rcv,
)?;
// Constrain cv_net to equal public input
layouter.constrain_instance(cv_net.inner().x().cell(), config.primary, CV_NET_X)?;
layouter.constrain_instance(cv_net.inner().y().cell(), config.primary, CV_NET_Y)?;
// Return the magnitude and sign so we can use them in the Orchard gate.
v_net_magnitude_sign
};
// Nullifier integrity (https://p.z.cash/ZKS:action-nullifier-integrity).
let nf_old = {
let nf_old = gadget::derive_nullifier(
layouter.namespace(|| "nf_old = DeriveNullifier_nk(rho_old, psi_old, cm_old)"),
config.poseidon_chip(),
config.add_chip(),
ecc_chip.clone(),
rho_old.clone(),
&psi_old,
&cm_old,
nk.clone(),
)?;
// Constrain nf_old to equal public input
layouter.constrain_instance(nf_old.inner().cell(), config.primary, NF_OLD)?;
nf_old
};
// Spend authority (https://p.z.cash/ZKS:action-spend-authority)
{
let alpha =
ScalarFixed::new(ecc_chip.clone(), layouter.namespace(|| "alpha"), self.alpha)?;
// alpha_commitment = [alpha] SpendAuthG
let (alpha_commitment, _) = {
let spend_auth_g = OrchardFixedBasesFull::SpendAuthG;
let spend_auth_g = FixedPoint::from_inner(ecc_chip.clone(), spend_auth_g);
spend_auth_g.mul(layouter.namespace(|| "[alpha] SpendAuthG"), alpha)?
};
// [alpha] SpendAuthG + ak_P
let rk = alpha_commitment.add(layouter.namespace(|| "rk"), &ak_P)?;
// Constrain rk to equal public input
layouter.constrain_instance(rk.inner().x().cell(), config.primary, RK_X)?;
layouter.constrain_instance(rk.inner().y().cell(), config.primary, RK_Y)?;
}
// Diversified address integrity (https://p.z.cash/ZKS:action-addr-integrity?partial).
let pk_d_old = {
let ivk = {
let ak = ak_P.extract_p().inner().clone();
let rivk = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rivk"),
self.rivk.map(|rivk| rivk.inner()),
)?;
gadget::commit_ivk(
config.sinsemilla_chip_1(),
ecc_chip.clone(),
config.commit_ivk_chip(),
layouter.namespace(|| "CommitIvk"),
ak,
nk,
rivk,
)?
};
let ivk =
ScalarVar::from_base(ecc_chip.clone(), layouter.namespace(|| "ivk"), ivk.inner())?;
// [ivk] g_d_old
// The scalar value is passed through and discarded.
let (derived_pk_d_old, _ivk) =
g_d_old.mul(layouter.namespace(|| "[ivk] g_d_old"), ivk)?;
// Constrain derived pk_d_old to equal witnessed pk_d_old
//
// This equality constraint is technically superfluous, because the assigned
// value of `derived_pk_d_old` is an equivalent witness. But it's nice to see
// an explicit connection between circuit-synthesized values, and explicit
// prover witnesses. We could get the best of both worlds with a write-on-copy
// abstraction (https://github.com/zcash/halo2/issues/334).
let pk_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness pk_d_old"),
self.pk_d_old.map(|pk_d_old| pk_d_old.inner().to_affine()),
)?;
derived_pk_d_old
.constrain_equal(layouter.namespace(|| "pk_d_old equality"), &pk_d_old)?;
pk_d_old
};
// Old note commitment integrity (https://p.z.cash/ZKS:action-cm-old-integrity?partial).
{
let rcm_old = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rcm_old"),
self.rcm_old.as_ref().map(|rcm_old| rcm_old.inner()),
)?;
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let derived_cm_old = gadget::note_commit(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_1(),
config.ecc_chip(),
config.note_commit_chip_old(),
g_d_old.inner(),
pk_d_old.inner(),
v_old.clone(),
rho_old,
psi_old,
rcm_old,
)?;
// Constrain derived cm_old to equal witnessed cm_old
derived_cm_old.constrain_equal(layouter.namespace(|| "cm_old equality"), &cm_old)?;
}
// New note commitment integrity (https://p.z.cash/ZKS:action-cmx-new-integrity?partial).
{
// Witness g_d_new
let g_d_new = {
let g_d_new = self.g_d_new.map(|g_d_new| g_d_new.to_affine());
NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness g_d_new_star"),
g_d_new,
)?
};
// Witness pk_d_new
let pk_d_new = {
let pk_d_new = self.pk_d_new.map(|pk_d_new| pk_d_new.inner().to_affine());
NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness pk_d_new"),
pk_d_new,
)?
};
// ρ^new = nf^old
let rho_new = nf_old.inner().clone();
// Witness psi_new
let psi_new = assign_free_advice(
layouter.namespace(|| "witness psi_new"),
config.advices[0],
self.psi_new,
)?;
let rcm_new = ScalarFixed::new(
ecc_chip,
layouter.namespace(|| "rcm_new"),
self.rcm_new.as_ref().map(|rcm_new| rcm_new.inner()),
)?;
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let cm_new = gadget::note_commit(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_2(),
config.ecc_chip(),
config.note_commit_chip_new(),
g_d_new.inner(),
pk_d_new.inner(),
v_new.clone(),
rho_new,
psi_new,
rcm_new,
)?;
let cmx = cm_new.extract_p();
// Constrain cmx to equal public input
layouter.constrain_instance(cmx.inner().cell(), config.primary, CMX)?;
}
// Constrain the remaining Orchard circuit checks.
layouter.assign_region(
|| "Orchard circuit checks",
|mut region| {
v_old.copy_advice(|| "v_old", &mut region, config.advices[0], 0)?;
v_new.copy_advice(|| "v_new", &mut region, config.advices[1], 0)?;
v_net_magnitude_sign.0.copy_advice(
|| "v_net magnitude",
&mut region,
config.advices[2],
0,
)?;
v_net_magnitude_sign.1.copy_advice(
|| "v_net sign",
&mut region,
config.advices[3],
0,
)?;
root.copy_advice(|| "calculated root", &mut region, config.advices[4], 0)?;
region.assign_advice_from_instance(
|| "pub input anchor",
config.primary,
ANCHOR,
config.advices[5],
0,
)?;
region.assign_advice_from_instance(
|| "enable spends",
config.primary,
ENABLE_SPEND,
config.advices[6],
0,
)?;
region.assign_advice_from_instance(
|| "enable outputs",
config.primary,
ENABLE_OUTPUT,
config.advices[7],
0,
)?;
config.q_orchard.enable(&mut region, 0)
},
)?;
Ok(())
}
}
/// The verifying key for the Orchard Action circuit.
#[derive(Debug)]
pub struct VerifyingKey {
pub(crate) params: halo2_proofs::poly::commitment::Params<vesta::Affine>,
pub(crate) vk: plonk::VerifyingKey<vesta::Affine>,
}
impl VerifyingKey {
/// Builds the verifying key.
pub fn build() -> Self {
let params = halo2_proofs::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(¶ms, &circuit).unwrap();
VerifyingKey { params, vk }
}
}
/// The proving key for the Orchard Action circuit.
#[derive(Debug)]
pub struct ProvingKey {
params: halo2_proofs::poly::commitment::Params<vesta::Affine>,
pk: plonk::ProvingKey<vesta::Affine>,
}
impl ProvingKey {
/// Builds the proving key.
pub fn build() -> Self {
let params = halo2_proofs::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(¶ms, &circuit).unwrap();
let pk = plonk::keygen_pk(¶ms, vk, &circuit).unwrap();
ProvingKey { params, pk }
}
}
/// Public inputs to the Orchard Action circuit.
#[derive(Clone, Debug)]
pub struct Instance {
pub(crate) anchor: Anchor,
pub(crate) cv_net: ValueCommitment,
pub(crate) nf_old: Nullifier,
pub(crate) rk: VerificationKey<SpendAuth>,
pub(crate) cmx: ExtractedNoteCommitment,
pub(crate) enable_spend: bool,
pub(crate) enable_output: bool,
}
impl Instance {
/// Constructs an [`Instance`] from its constituent parts.
///
/// This API can be used in combination with [`Proof::verify`] to build verification
/// pipelines for many proofs, where you don't want to pass around the full bundle.
/// Use [`Bundle::verify_proof`] instead if you have the full bundle.
///
/// [`Bundle::verify_proof`]: crate::Bundle::verify_proof
pub fn from_parts(
anchor: Anchor,
cv_net: ValueCommitment,
nf_old: Nullifier,
rk: VerificationKey<SpendAuth>,
cmx: ExtractedNoteCommitment,
enable_spend: bool,
enable_output: bool,
) -> Self {
Instance {
anchor,
cv_net,
nf_old,
rk,
cmx,
enable_spend,
enable_output,
}
}
fn to_halo2_instance(&self) -> [[vesta::Scalar; 9]; 1] {
let mut instance = [vesta::Scalar::zero(); 9];
instance[ANCHOR] = self.anchor.inner();
instance[CV_NET_X] = self.cv_net.x();
instance[CV_NET_Y] = self.cv_net.y();
instance[NF_OLD] = self.nf_old.0;
let rk = pallas::Point::from_bytes(&self.rk.clone().into())
.unwrap()
.to_affine()
.coordinates()
.unwrap();
instance[RK_X] = *rk.x();
instance[RK_Y] = *rk.y();
instance[CMX] = self.cmx.inner();
instance[ENABLE_SPEND] = vesta::Scalar::from(u64::from(self.enable_spend));
instance[ENABLE_OUTPUT] = vesta::Scalar::from(u64::from(self.enable_output));
[instance]
}
}
/// A proof of the validity of an Orchard [`Bundle`].
///
/// [`Bundle`]: crate::bundle::Bundle
#[derive(Clone)]
pub struct Proof(Vec<u8>);
impl fmt::Debug for Proof {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
f.debug_tuple("Proof").field(&self.0).finish()
} else {
// By default, only show the proof length, not its contents.
f.debug_tuple("Proof")
.field(&format_args!("{} bytes", self.0.len()))
.finish()
}
}
}
impl AsRef<[u8]> for Proof {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl DynamicUsage for Proof {
fn dynamic_usage(&self) -> usize {
self.0.dynamic_usage()
}
fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
self.0.dynamic_usage_bounds()
}
}
impl Proof {
/// Creates a proof for the given circuits and instances.
pub fn create(
pk: &ProvingKey,
circuits: &[Circuit],
instances: &[Instance],
mut rng: impl RngCore,
) -> Result<Self, plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
let mut transcript = Blake2bWrite::<_, vesta::Affine, _>::init(vec![]);
plonk::create_proof(
&pk.params,
&pk.pk,
circuits,
&instances,
&mut rng,
&mut transcript,
)?;
Ok(Proof(transcript.finalize()))
}
/// Verifies this proof with the given instances.
pub fn verify(&self, vk: &VerifyingKey, instances: &[Instance]) -> Result<(), plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
let strategy = SingleVerifier::new(&vk.params);
let mut transcript = Blake2bRead::init(&self.0[..]);
plonk::verify_proof(&vk.params, &vk.vk, strategy, &instances, &mut transcript)
}
/// Adds this proof to the given batch for verification with the given instances.
///
/// Use this API if you want more control over how proof batches are processed. If you
/// just want to batch-validate Orchard bundles, use [`bundle::BatchValidator`].
///
/// [`bundle::BatchValidator`]: crate::bundle::BatchValidator
pub fn add_to_batch(&self, batch: &mut BatchVerifier<vesta::Affine>, instances: Vec<Instance>) {
let instances = instances
.iter()
.map(|i| {
i.to_halo2_instance()
.into_iter()
.map(|c| c.into_iter().collect())
.collect()
})
.collect();
batch.add_proof(instances, self.0.clone());
}
/// Constructs a new Proof value.
pub fn new(bytes: Vec<u8>) -> Self {
Proof(bytes)
}
}
#[cfg(test)]
mod tests {
use core::iter;
use ff::Field;
use halo2_proofs::{circuit::Value, dev::MockProver};
use pasta_curves::pallas;
use rand::{rngs::OsRng, RngCore};
use super::{Circuit, Instance, Proof, ProvingKey, VerifyingKey, K};
use crate::{
keys::SpendValidatingKey,
note::Note,
tree::MerklePath,
value::{ValueCommitTrapdoor, ValueCommitment},
};
fn generate_circuit_instance<R: RngCore>(mut rng: R) -> (Circuit, Instance) {
let (_, fvk, spent_note) = Note::dummy(&mut rng, None);
let sender_address = spent_note.recipient();
let nk = *fvk.nk();
let rivk = fvk.rivk(fvk.scope_for_address(&spent_note.recipient()).unwrap());
let nf_old = spent_note.nullifier(&fvk);
let ak: SpendValidatingKey = fvk.into();
let alpha = pallas::Scalar::random(&mut rng);
let rk = ak.randomize(&alpha);
let (_, _, output_note) = Note::dummy(&mut rng, Some(nf_old));
let cmx = output_note.commitment().into();
let value = spent_note.value() - output_note.value();
let rcv = ValueCommitTrapdoor::random(&mut rng);
let cv_net = ValueCommitment::derive(value, rcv.clone());
let path = MerklePath::dummy(&mut rng);
let anchor = path.root(spent_note.commitment().into());
(
Circuit {