-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_prediction.py
164 lines (123 loc) · 5.34 KB
/
tf_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import pandas as pd
from sklearn.model_selection import train_test_split
from utils import *
from prepare_data import prepare_testing
seed = 0
torch.manual_seed(seed)
def train(prefix, device):
df = pd.read_csv(prefix+'data/train_processed.csv')
train_data, valid_data = train_test_split(df, test_size=0.15, random_state=seed)
transform = transforms.Compose([transforms.ToTensor()])
trainset = DNA(train_data, transform=transform)
validset = DNA(valid_data, transform=transform)
batch_size = 64
print_freq = 200
num_epochs = 20
learning_rate = 1e-3
weight_decay = 1e-3
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
validloader = torch.utils.data.DataLoader(validset,
batch_size=len(validset), shuffle=False, num_workers=2, pin_memory=True)
net = Net().float().to(device)
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)
outputs = labels = None
train_loss = []
valid_loss = []
valid_steps = []
path = prefix+'results_training'
os.makedirs(path, exist_ok=True)
vs = 0
best_valid_loss = 99
best_outputs = None
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
fw_inputs, rev_inputs, labels = data
fw_inputs, rev_inputs, labels = fw_inputs.to(device), rev_inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(fw_inputs.float(), rev_inputs.float())
loss = criterion(outputs, labels.view(-1, 1))
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % print_freq == print_freq-1: # print every 200 mini-batches
print('[%d, %5d] training loss: %.3f' % (epoch + 1, i + 1, running_loss / print_freq))
running_loss = 0.0
train_loss.append(loss.item())
vs += 1
# validation every epoch
with torch.no_grad():
for data in validloader:
fw_inputs, rev_inputs, labels = data
fw_inputs, rev_inputs, labels = fw_inputs.to(device), rev_inputs.to(device), labels.to(device)
outputs = net(fw_inputs.float(), rev_inputs.float())
loss = criterion(outputs, labels.view(-1, 1))
print('[%d] validation loss: %.3f' % (epoch + 1, loss.item()))
valid_loss.append(loss.item())
valid_steps.append(vs)
if valid_loss[epoch] < best_valid_loss:
best_valid_loss = valid_loss[epoch]
best_outputs = outputs.detach().clone()
print('Best validation loss so far, saving model')
torch.save(net.state_dict(), path+'/tf.pth')
print('Finished Training')
labels = labels.cpu()
predicted = torch.tensor([1. if d > 0.5 else 0. for d in best_outputs.data])
print('Best validation loss: %.3f' % (best_valid_loss))
total = labels.size(0)
correct = (predicted == labels).sum().item()
print('Accuracy on the validation sequences: %d %%' % (100 * correct / total))
# generate ROC, PR, Training Curves
roc_pr(labels, predicted, path)
training_curve(train_loss, valid_loss, valid_steps, path, smoothing_weight=0.9)
# generate sequence motifs
net = Net().float().to(device)
net.load_state_dict(torch.load(path+'/tf.pth'))
generate_motfis(net, validloader, path, device)
def test(prefix, path, device):
df = prepare_testing(path)
transform = transforms.Compose([transforms.ToTensor()])
testset = DNA(df, transform=transform)
testloader = torch.utils.data.DataLoader(testset,
batch_size=len(testset), shuffle=False, num_workers=2, pin_memory=True)
net = Net().float().to(device)
net.load_state_dict(torch.load('results_training/tf.pth'))
criterion = nn.BCELoss()
outputs = labels = None
with torch.no_grad():
for data in testloader:
fw_inputs, rev_inputs, labels = data
outputs = net(fw_inputs.float(), rev_inputs.float())
loss = criterion(outputs, labels.view(-1, 1))
print('Test loss: %.3f' % (loss.item()))
print('Finished Testing')
predicted = torch.tensor([1. if d > 0.5 else 0. for d in outputs.data])
total = labels.size(0)
correct = (predicted == labels).sum().item()
print('Accuracy on the test sequences: %d %%' % (100 * correct / total))
# generate ROC, PR Curves and sequence motifs
path = prefix+'results_test'
os.makedirs(path, exist_ok=True)
roc_pr(labels, predicted, path)
generate_motfis(net, testloader, path, device)
def main(args):
prefix = ''
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.test:
path = prefix+'data/test.csv'
test(prefix, path, device)
else:
train(prefix, device)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='TF')
parser.add_argument('--test', default=False, action='store_true', help='test the model')
args = parser.parse_args()
main(args)