This repository has been archived by the owner on Jun 8, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathlm.py
268 lines (231 loc) · 10.4 KB
/
lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from torchtext import data
from torch.utils.data import DataLoader
from graph import LMBatcher, get_lm_dataset
from graph.lm import LMDataset
from modules import make_model
from optim import get_wrapper
from utils import unpack_params
import numpy as np
import torch as th
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import argparse
import yaml
import time
import os
char_lm = ['enwik8', 'text8']
def run(proc_id, n_gpus, devices, config, checkpoint, eval_mode):
th.manual_seed(config['seed'])
np.random.seed(config['seed'])
th.cuda.manual_seed_all(config['seed'])
dev_id = devices[proc_id]
if n_gpus > 1:
dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
master_ip='127.0.0.1', master_port='12345')
world_size = n_gpus
th.distributed.init_process_group(backend="nccl",
init_method=dist_init_method,
world_size=world_size,
rank=dev_id)
TEXT = data.Field(batch_first=True)
train, dev, test = get_lm_dataset(config['dataset']).splits(TEXT, root='./data')
TEXT.build_vocab(train)
train = LMDataset(train, max_length=config['length'], part=(proc_id, n_gpus))
eval_length = config['eval_length']
dev = LMDataset(dev, max_length=eval_length, test=True)
test = LMDataset(test, max_length=eval_length, test=True)
batcher = LMBatcher(TEXT,
graph_type=config['graph_type'],
**config.get('graph_attrs', {}))
if not eval_mode:
train_loader = DataLoader(dataset=train,
batch_size=config['batch_size'] // n_gpus,
collate_fn=batcher,
shuffle=True,
num_workers=6)
dev_loader = DataLoader(dataset=dev,
batch_size=config['dev_batch_size'] // n_gpus,
collate_fn=batcher,
shuffle=False,
num_workers=6)
test_loader = DataLoader(dataset=test,
batch_size=config['batch_size'] // n_gpus,
collate_fn=batcher,
shuffle=False,
num_workers=6)
dim_embed = config['dim_embed']
dim_model = config['dim_model']
dim_ff = config['dim_ff']
num_heads = config['num_heads']
n_layers = config['n_layers']
vocab_size = len(TEXT.vocab)
dim_pos = config.get('dim_pos', 1)
model = make_model(vocab_size, dim_embed, dim_model, dim_ff, num_heads, vocab_size, n_layers,
dropouti=config['dropouti'], dropouth=config['dropouth'],
dropouta=config.get('dropouta', 0.1), dropoutc=config['dropoutc'],
rel_pos=config['rel_pos'], dim_pos=dim_pos)
if checkpoint != -1:
with open('checkpoints/{}.pkl'.format(checkpoint), 'rb') as f:
state_dict = th.load(f, map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
# tie weights
if dim_embed == dim_model:
model.embed.lut.weight = model.generator.proj.weight
device = th.device(dev_id)
th.cuda.set_device(device)
model = model.to(device)
embed_params, other_params, wd_params = unpack_params(model.named_parameters())
optimizer = get_wrapper(config['opt_wrapper'])(
optim.Adam([
{'params': embed_params + other_params, 'lr': config.get('lr', 1e-3), 'betas': (0.9, 0.98)},
{'params': wd_params, 'lr': config.get('lr', 1e-3), 'betas': (0.9, 0.98)}]),
**config.get('opt_attrs', {}))
if not eval_mode:
for _ in range(checkpoint + 1):
for _ in range(len(train_loader)):
optimizer.step()
best_val = 1e9
best_test = 0
last_epoch = checkpoint + 2 if eval_mode else config['n_epochs']
eval_interval = config.get('eval_interval', 1)
for epoch in range(checkpoint + 1, last_epoch):
if not eval_mode:
if proc_id == 0:
print('epoch {} starts'.format(epoch))
print('training...')
model.train()
n_tokens = 0
sum_loss = 0
hit = 0
tic = time.time()
for i, batch in enumerate(train_loader):
batch.y = batch.y.to(device)
batch.g.edata['etype'] = batch.g.edata['etype'].to(device)
batch.g.ndata['x'] = batch.g.ndata['x'].to(device)
if dim_pos == 1:
batch.g.ndata['pos'] = batch.g.ndata['pos'].to(device)
else:
for k in range(dim_pos):
batch.g.ndata['pos_{}'.format(k)] = batch.g.ndata['pos_{}'.format(k)].to(device)
aux = (epoch * 1.0 / config['n_epochs']) if config['dataset'] in char_lm else None
out = model(batch, aux=aux)
if aux is None:
loss = F.nll_loss(out, batch.y)
else:
loss = 0
for out_l in out:
loss = loss + F.nll_loss(out_l, batch.y)
loss /= len(out)
optimizer.zero_grad()
loss.backward()
if n_gpus > 1:
for param in model.parameters():
if param.requires_grad and param.grad is not None:
th.distributed.all_reduce(param.grad.data,
op=th.distributed.ReduceOp.SUM)
param.grad.data /= n_gpus
nn.utils.clip_grad_norm_(model.parameters(), 0.25)
optimizer.step()
n = len(batch.y)
n_tokens += n
sum_loss += loss.item() * n
if aux is None:
hit += (out.max(dim=-1)[1] == batch.y).sum().item()
else:
hit += (out[-1].max(dim=-1)[1] == batch.y).sum().item()
if (i + 1) % config['log_interval'] == 0 and proc_id == 0:
mem = th.cuda.max_memory_cached()
print('ppl: ', np.exp(sum_loss / n_tokens), ' acc: ', hit * 1.0 / n_tokens,
' #tokens/s: ', config['batch_size'] * config['log_interval'] * config['length'] / (time.time() - tic),
' #mem: ', mem / 1024 / 1024 / 1024)
tic = time.time()
n_tokens, sum_loss, hit = 0, 0, 0
if n_gpus > 1:
th.distributed.barrier()
if proc_id == 0:
print('evaluating...')
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
with open('checkpoints/{}.pkl'.format(epoch), 'wb') as f:
th.save(model.state_dict(), f)
if (epoch + 1) % eval_interval > 0 and not eval_mode:
continue
model.eval()
n_tokens = 0
sum_loss = 0
hit = 0
for batch in dev_loader:
batch.y = batch.y.to(device)
batch.g.edata['etype'] = batch.g.edata['etype'].to(device)
batch.g.ndata['x'] = batch.g.ndata['x'].to(device)
if dim_pos == 1:
batch.g.ndata['pos'] = batch.g.ndata['pos'].to(device)
else:
for k in range(dim_pos):
batch.g.ndata['pos_{}'.format(k)] = batch.g.ndata['pos_{}'.format(k)].to(device)
with th.no_grad():
out = model(batch)
loss = F.nll_loss(out, batch.y, reduction='sum')
n = len(batch.y)
n_tokens += n
sum_loss += loss.item()
hit += (out.max(dim=-1)[1] == batch.y).sum().item()
if proc_id == 0:
if config['dataset'] in char_lm:
print('bpc: ', (sum_loss / n_tokens) / np.log(2), ' acc: ', hit * 1.0 / n_tokens)
else:
print('ppl: ', np.exp(sum_loss / n_tokens), ' acc: ', hit * 1.0 / n_tokens)
optimizer.adjust_lr(np.exp(sum_loss / n_tokens))
val_ppl = np.exp(sum_loss / n_tokens)
if proc_id == 0:
print('testing...')
model.eval()
n_tokens = 0
sum_loss = 0
hit = 0
for batch in test_loader:
batch.y = batch.y.to(device)
batch.g.edata['etype'] = batch.g.edata['etype'].to(device)
batch.g.ndata['x'] = batch.g.ndata['x'].to(device)
if dim_pos == 1:
batch.g.ndata['pos'] = batch.g.ndata['pos'].to(device)
else:
for k in range(dim_pos):
batch.g.ndata['pos_{}'.format(k)] = batch.g.ndata['pos_{}'.format(k)].to(device)
with th.no_grad():
out = model(batch)
loss = F.nll_loss(out, batch.y, reduction='sum')
n = len(batch.y)
n_tokens += n
sum_loss += loss.item()
hit += (out.max(dim=-1)[1] == batch.y).sum().item()
if proc_id == 0:
if config['dataset'] in char_lm:
print('bpc: ', (sum_loss / n_tokens) / np.log(2), ' acc: ', hit * 1.0 / n_tokens)
else:
print('ppl: ', np.exp(sum_loss / n_tokens), ' acc: ', hit * 1.0 / n_tokens)
if val_ppl < best_val:
best_val = val_ppl
best_test = np.exp(sum_loss / n_tokens)
if proc_id == 0:
if config['dataset'] in char_lm:
print('best val: %.2f ' % np.log2(best_val), 'best test: %.2f ' % np.log2(best_test))
else:
print('best val: %.2f ' % best_val, 'best test: %.2f ' % best_test)
if __name__ == '__main__':
argparser = argparse.ArgumentParser("language modeling")
argparser.add_argument('--config', type=str)
argparser.add_argument('--gpu', type=str, default='0')
argparser.add_argument('--eval', action='store_true')
argparser.add_argument('--checkpoint', type=int, default=-1)
args = argparser.parse_args()
with open(args.config, 'r') as f:
config = yaml.load(f)
devices = list(map(int, args.gpu.split(',')))
n_gpus = len(devices)
if n_gpus == 1:
run(0, n_gpus, devices, config, args.checkpoint, args.eval)
else:
mp = th.multiprocessing
mp.spawn(run, args=(n_gpus, devices, config, args.checkpoint, args.eval), nprocs=n_gpus)