-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathevaluate_imagenet.py
69 lines (57 loc) · 3.46 KB
/
evaluate_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from __future__ import division
from __future__ import print_function
import argparse
import math
import tensorflow as tf; slim = tf.contrib.slim
from keras import backend as K
# PYHTONPATH should contain the research/slim/ directory in the tensorflow/models repo.
from datasets import dataset_factory
from preprocessing import preprocessing_factory
from inception_resnet_v2 import InceptionResNetV2
def prepare_data(imagenet_dir, batch_size, num_threads):
# setup image loading
dataset = dataset_factory.get_dataset('imagenet', 'validation', imagenet_dir)
provider = slim.dataset_data_provider.DatasetDataProvider(dataset,
shuffle=False,
common_queue_capacity=batch_size * 5,
common_queue_min=batch_size)
image, label = provider.get(['image', 'label'])
# preprocess images and split into batches
preprocess_input = preprocessing_factory.get_preprocessing('inception_resnet_v2',
is_training=False)
image = preprocess_input(image, 299, 299)
images, labels = tf.train.batch([image, label],
batch_size=batch_size,
num_threads=num_threads,
capacity=batch_size * 5)
# Keras label is different from TF
labels = labels - 1 # remove the "background class"
labels = K.cast(K.expand_dims(labels, -1), K.floatx()) # Keras labels are 2D float tensors
return images, labels, dataset.num_samples
def evaluate(imagenet_dir, batch_size=100, steps=None, num_threads=4, verbose=False):
with K.get_session().as_default():
# setup data tensors
images, labels, num_samples = prepare_data(imagenet_dir, batch_size, num_threads)
tf.train.start_queue_runners(coord=tf.train.Coordinator())
# compile model in order to provide `metrics` and `target_tensors`
model = InceptionResNetV2(input_tensor=images)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy', 'sparse_top_k_categorical_accuracy'],
target_tensors=[labels])
# start evaluation
if steps is None:
steps = int(math.ceil(num_samples / batch_size))
_, acc1, acc5 = model.evaluate(x=None, y=None, steps=steps, verbose=int(verbose))
print()
print('Top-1 Accuracy {:.1%}'.format(acc1))
print('Top-5 Accuracy {:.1%}'.format(acc5))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("imagenet_dir", type=str, help="where ImageNet data is located (i.e. the output of `download_and_convert_imagenet.sh` from TF-slim)")
parser.add_argument("--batch_size", type=int, default=100, help="batch size when evaluating, set this number according to your GPU memory")
parser.add_argument("--steps", type=int, default=None, help="maximum number of batches to evaluate, if not specified, will go through the entire validation set by default")
parser.add_argument("--num_threads", type=int, default=4, help="number of threads to use for data loading, default 4")
parser.add_argument("--verbose", action='store_true', help="if specified, print the progress bar")
args = parser.parse_args()
evaluate(**vars(args))