-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmutation-gaussian.h
155 lines (132 loc) · 3.44 KB
/
mutation-gaussian.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#pragma once
#include "mutationvectorized.h"
#include "chromosome.h"
#include <random>
#include <math.h>
class MutationGaussian : public MutationVectorized {
protected:
double mean;
double stddev;
std::normal_distribution<double> *distribution = NULL;
std::mt19937 *randomGen = NULL;
void initialize(double m, double sdev);
void refreshDistribution();
public:
void mutate(Chromosome *chromosome);
void mutate(Gene *gene);
double getMean();
void setMean(double m);
double getStdDev();
void setStdDev(double s);
MutationGaussian(double m, double sdev);
~MutationGaussian();
};
inline void MutationGaussian::initialize(double m, double sdev)
{
mean = m;
stddev = sdev;
randomGen = new std::mt19937(static_cast<unsigned int>(std::time(0)));
distribution = new std::normal_distribution<double>(mean, stddev);
}
inline void MutationGaussian::refreshDistribution()
{
if (distribution == NULL)
return;
delete distribution;
distribution = new std::normal_distribution<double>(mean, stddev);
}
inline void MutationGaussian::mutate(Chromosome* chromosome)
{
std::vector<Gene *> *genes = chromosome->getGenes();
size_t i = 0;
for (std::vector<Gene *>::iterator it = genes->begin(); it != genes->end(); it++) {
mutate(*it);
i++;
}
}
inline void MutationGaussian::mutate(Gene* gene) {
double randomNum = (*distribution)(*randomGen);
GeneValue newValue;
switch (gene->getDataType())
{
case (FLOAT): {
newValue.floatValue = gene->getValue().floatValue + (float)randomNum;
gene->setValue(newValue);
break;
}
case (DOUBLE): {
newValue.doubleValue = gene->getValue().doubleValue + randomNum;
gene->setValue(newValue);
break;
}
case (INT8): {
newValue.int8Value = gene->getValue().int8Value + (int8_t)round(randomNum);
gene->setValue(newValue);
break;
}
case (UINT8): {
newValue.uint8Value = (uint8_t)(gene->getValue().int8Value + (int8_t)round(randomNum));
gene->setValue(newValue);
break;
}
case (INT16): {
newValue.int16Value = gene->getValue().int16Value + (int16_t)round(randomNum);
gene->setValue(newValue);
break;
}
case (UINT16): {
newValue.uint16Value = (uint16_t)(gene->getValue().int16Value + (int16_t)round(randomNum));
gene->setValue(newValue);
break;
}
case (INT32): {
newValue.int32Value = gene->getValue().int32Value + (int32_t)round(randomNum);
gene->setValue(newValue);
break;
}
case (UINT32): {
newValue.uint32Value = (uint32_t)(gene->getValue().int32Value + (int32_t)round(randomNum));
gene->setValue(newValue);
break;
}
case (INT64): {
newValue.int64Value = gene->getValue().int64Value + (int64_t)round(randomNum);
gene->setValue(newValue);
break;
}
case (UINT64): {
newValue.uint64Value = (uint64_t)(gene->getValue().int64Value + (int64_t)round(randomNum));
gene->setValue(newValue);
break;
}
}
}
inline double MutationGaussian::getMean()
{
return mean;
}
inline void MutationGaussian::setMean(double m)
{
mean = m;
refreshDistribution();
}
inline double MutationGaussian::getStdDev()
{
return stddev;
}
inline void MutationGaussian::setStdDev(double s)
{
stddev = s;
refreshDistribution();
}
inline MutationGaussian::MutationGaussian(double m, double sdev)
{
initialize(m, sdev);
}
inline MutationGaussian::~MutationGaussian()
{
if (distribution)
delete distribution;
if (randomGen)
delete randomGen;
}