-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer_PCAN.py
458 lines (343 loc) · 17.8 KB
/
trainer_PCAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import wandb
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import MinkowskiEngine as ME
from trainer_utils import prob2Ent
from dataset.get_dataloader import get_TV_dl
from network.lr_adjust import adjust_learning_rate, adjust_learning_rate_D
from utils import common as com
from validate_train import validater
from utils.classFeature import prototype_dist_estimator
source_label, target_label = 0, 1
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
class PCAN_Trainer:
def __init__(self,
cfg,
net_G, old_G, net_D,
G_optim, D_optim,
logger, tf_writer, device):
self.start_iter = 0
self.ml_info = {'bt_tgt_spIoU': 0}
self.cfg = cfg
self.logger = logger
self.tf_writer = tf_writer
self.device = device
self.net_G = net_G
self.net_D = net_D
self.old_G = old_G
self.G_optim = G_optim
self.D_optim = D_optim
""" Define Loss Function """
self.criterion = nn.CrossEntropyLoss(ignore_index=0) # seg loss
if self.cfg.MODEL_D.GAN_MODE == 'ls_gan':# gan loss
self.criterionGAN = nn.MSELoss(reduction='none')
elif self.cfg.MODEL_D.GAN_MODE == 'vanilla_gan':
self.criterionGAN = nn.BCEWithLogitsLoss(reduction='none')
""" get_dataset & dataloader """
self.init_dataloader()
self.t_val_iter = self.cfg.TRAIN.T_VAL_ITER
self.s_val_iter = self.cfg.TRAIN.S_VAL_ITER
""" Other training parameters"""
self.c_iter = 0 # Current Iter
self.round = 0 # current round
self.best_IoU_iter = 0
self.best_IoU_after_saveIter = 0
self.out_class_center = prototype_dist_estimator(cfg, 96)
if self.cfg.MEAN_TEACHER.use_mt:
self.create_ema_model(self.old_G, self.net_G)
def train(self):
for epoch in range(self.cfg.TRAIN.MAX_EPOCHS):
print("This is epoch: {}".format(epoch))
self.train_one_epoch()
def train_one_epoch(self):
for tgt_BData in self.tgt_train_loader:
self.wb_dict = {}
self.c_iter += 1
start_t = time.time()
self.set_lr()
self.set_zero_grad()
# """ 初始化预测伪标签的模型 Init old_G for generate pseudo-label"""
if self.cfg.MEAN_TEACHER.round_change and \
(self.c_iter % self.cfg.MEAN_TEACHER.round_period == 0 or \
self.c_iter == self.cfg.TRAIN.PREHEAT_STEPS): # start new round
self.create_ema_model(self.old_G, self.net_G)
# send data to GPU
src_BData = self.src_TraDL.next()
self.src_BData = self.send_data2GPU(src_BData)
self.tgt_BData = self.send_data2GPU(tgt_BData)
# update G
self.train_source()
self.train_target()
self.G_optim.step()
# update D
self.train_net_D()
self.D_optim.step()
# update prototype
self.update_proto()
if self.cfg.MEAN_TEACHER.use_mt and \
self.cfg.MEAN_TEACHER.alpha_ema > 0 and \
self.cfg.MEAN_TEACHER.round_change == False:
self.update_ema_variables(self.old_G, self.net_G)
if self.c_iter % self.cfg.TRAIN.LOG_PERIOD == 0:
print('iter:{0:6d}, '
'seg_Ls:{1:.4f}, '
'adv_Ls:{2:.4f}, '
'itr:{3:.3f}, '
'Exp:{4}'.format(self.c_iter,
self.wb_dict['netG/seg_Loss'],
self.wb_dict['netG/adv_Loss'],
time.time() - start_t,
self.cfg.TRAIN.EXP_NAME))
self.save_log() # save logs
if self.c_iter % self.t_val_iter == 0: # Traget domain val.
self.valid_and_save()
if self.c_iter % self.s_val_iter == 0: # Source domain val.
_ = self.src_valer.rolling_predict(self.net_G, self.old_G, self.c_iter, domain='src')
if self.c_iter % 10 == 0:
torch.cuda.empty_cache()
if self.c_iter == self.cfg.TRAIN.MAX_ITERS:
if self.c_iter % self.t_val_iter != 0:
self.valid_and_save()
print("Finish training, this is max iter: {}".format(self.c_iter))
quit()
torch.cuda.empty_cache()
def train_source(self):# ===========train G ================
# Train with Source. compute source seg loss
src_G_in = ME.SparseTensor(self.src_BData['aug_feats_mink'], self.src_BData['aug_coords_mink'])
self.src_logits, self.src_outFt = self.net_G(src_G_in)
all_src_loss = 0.
# loss 1. main classifier CE loss
src_seg_loss = self.criterion(self.src_logits.F, self.src_BData['aug_labels_mink'])
all_src_loss = all_src_loss + src_seg_loss
all_src_loss.backward()
self.wb_dict['netG/seg_Loss'] = src_seg_loss.mean()
self.wb_dict['netG/all_src_loss'] = all_src_loss.mean()
def train_target(self):
""" stu-model forward """
tgt_G_in = ME.SparseTensor(self.tgt_BData['feats_mink'], self.tgt_BData['coords_mink'])
# tgt_G_in_4 = ME.SparseTensor(self.tgt_BData['feats_mink_4'], self.tgt_BData['coords_mink_4'])
self.tgt_n_logits, self.tgt_outFt = self.net_G(tgt_G_in)
# 1. 得到伪标签
if self.cfg.TGT_LOSS.CATEGORY_ADV:
if self.cfg.MEAN_TEACHER.use_mt and self.cfg.MEAN_TEACHER.round_change == False:
pse_label, tgt_ps_weight = self.gen_tgt_pse_label_by_MT()
tgt_ps_weight = 1.
self.tgt_ps_lab = pse_label
all_tgt_loss = 0
# loss 1: adv loss
adv_loss = self.train_adv()
all_tgt_loss = all_tgt_loss + adv_loss
all_tgt_loss.backward()
def gen_tgt_pse_label_by_FixModel(self):
with torch.no_grad(): # old-model generate pseudo-label
tgt_G_in = ME.SparseTensor(self.tgt_BData['feats_mink'], self.tgt_BData['coords_mink'])
use_domain = 'tgt'
self.tgt_o_logits, self.tgt_Tremis = self.old_G(tgt_G_in, is_train=False)
# Get the pseudo label
mask_ent = None
tgt_n_softM = F.softmax(self.tgt_n_logits.F, 1)
tgt_o_softM = F.softmax(self.tgt_o_logits.F, 1)
tgt_n_ent = prob2Ent(tgt_n_softM).sum(1)
tgt_o_ent = prob2Ent(tgt_o_softM).sum(1)
mask_n_ent = tgt_n_ent < 0.05
mask_o_ent = tgt_o_ent < 0.05
# mask_ent = mask_n_ent * mask_o_ent
proto_logit = F.cosine_similarity(self.tgt_outFt.unsqueeze(1).detach(), self.out_class_center.Proto.unsqueeze(0), dim=-1)
mask_proto = proto_logit.max(dim=1)[1] == tgt_ps_lab
mask_ent = mask_n_ent * mask_o_ent * mask_proto
self.wb_dict['netG/mask_entSum'] = mask_ent.sum()
tgt_ps_lab = tgt_o_softM.argmax(dim=1)
conf = tgt_o_softM.max(dim=1)[0]
mask = conf.ge(self.cfg.PSEUDO_LABEL.threshold)
tgt_ps_lab = tgt_ps_lab * mask
tgt_ps_lab = tgt_ps_lab * mask_ent
return tgt_ps_lab
def gen_tgt_pse_label_by_MT(self):
# init pseudo label
tgt_G_in = ME.SparseTensor(self.tgt_BData['feats_mink'], self.tgt_BData['coords_mink'])
with torch.no_grad(): # old-model generate pseudo-label
use_domain = 'tgt'
self.tgt_mt_logits = self.old_G(tgt_G_in, is_train=False) # , gen_pslab=True
pred_softM = F.softmax(self.tgt_mt_logits.F, 1)
tp_ps_lab_temp = pred_softM.argmax(dim=1)
if self.cfg.PSEUDO_LABEL.use_entropy:
pred_ent = prob2Ent(pred_softM).sum(1).detach()
mask = pred_ent < self.cfg.PSEUDO_LABEL.ent_threshold
if self.cfg.PSEUDO_LABEL.use_confidence:
conf = pred_softM.max(dim=1)[0]
mask = conf.ge(self.cfg.PSEUDO_LABEL.threshold)
tgt_ps_lab = torch.zeros_like(tp_ps_lab_temp)
tgt_ps_lab[mask] = tp_ps_lab_temp[mask]
pse_weight = mask.sum() / mask.shape[0]
self.wb_dict['netG/mask_entSum'] = mask.sum()
return tgt_ps_lab, pse_weight
def train_adv(self): # ===========train G ================
adv_in = self.tgt_n_logits
D_logit_out = self.net_D(adv_in)
adv_lab = torch.zeros_like(D_logit_out)
adv_loss = self.criterionGAN(D_logit_out, adv_lab)
if self.c_iter > self.cfg.TRAIN.PREHEAT_STEPS and \
self.cfg.TGT_LOSS.CATEGORY_ADV and \
self.c_iter > self.cfg.TGT_LOSS.cal_start_iter:
assert self.tgt_ps_lab is not None
cal_adv_loss = self.cal_category_adv_loss(adv_loss, self.tgt_ps_lab)
lambda_cal_adv = self.cfg.TGT_LOSS.lambda_cal_adv
adv_loss = cal_adv_loss * lambda_cal_adv + adv_loss.mean() * (1 - lambda_cal_adv)
self.wb_dict['netG/cal_adv_Loss'] = cal_adv_loss
else:
adv_loss = adv_loss.mean()
adv_loss = adv_loss * self.cfg.TGT_LOSS.LAMBDA_ADV
self.wb_dict['netG/adv_Loss'] = adv_loss
return adv_loss
def train_net_D(self): # ===========train D================
for param in self.net_D.parameters(): # Bring back Grads in D
param.requires_grad = True
self.D_optim.zero_grad()
# Train with Source
src_D_in = self.src_logits.detach()
src_D_out = self.net_D(src_D_in)
src_d_loss = self.criterionGAN(src_D_out, torch.zeros_like(src_D_out))
src_d_loss = src_d_loss.mean() # * 0.5
src_d_loss.backward()
# Train with target
tgt_D_in = self.tgt_n_logits.detach()
tgt_D_out = self.net_D(tgt_D_in)
tgt_d_loss = self.criterionGAN(tgt_D_out, torch.ones_like(tgt_D_out))
tgt_d_loss = tgt_d_loss.mean() # * 0.5
tgt_d_loss.backward()
self.wb_dict['netD/src'] = src_d_loss
self.wb_dict['netD/tgt'] = tgt_d_loss
def cal_category_adv_loss(self, adv_loss, vo_lab):
lab = vo_lab
old_unique_lab, old_uni_counts = torch.unique(lab, return_counts=True)
for i in range(len(old_unique_lab)):
if old_uni_counts[i] < 50:
lab[lab == old_unique_lab[i]] = 0
unique_lab, uni_counts = torch.unique(lab, return_counts=True)
valid_lab_count = 0.
final_adv_loss = 0.
for i in unique_lab:
# V1
valid_lab_count += 1
temp_adv_loss = adv_loss[lab == i, :].view(-1)
if i == 0 or (lab == i).sum() < 30:
temp_adv_loss_mean = temp_adv_loss.mean()
elif self.cfg.TGT_LOSS.PROTO_REWEIGHT and self.cfg.TGT_LOSS.CAL_out:
temp_i_ft = self.tgt_outFt[lab == i, :] # .detach()
temp_proto = self.out_class_center.Proto[i]
cossim = 1.0 - F.cosine_similarity(temp_proto.expand_as(temp_i_ft), temp_i_ft)
temp_adv_loss_mean = (temp_adv_loss * cossim).sum() / cossim.sum()
else:
temp_adv_loss_mean = temp_adv_loss.mean()
final_adv_loss = final_adv_loss + temp_adv_loss_mean
return final_adv_loss
def update_proto(self):
if self.cfg.PROTOTYPE.update_domain == "src":
self.out_class_center.update(self.src_outFt, self.src_BData['aug_labels_mink'])
if self.cfg.PROTOTYPE.update_domain == "tgt":
self.out_class_center.update(self.tgt_outFt, self.tgt_ps_lab)
def valid_and_save(self):
cp_fn = os.path.join(self.cfg.TRAIN.MODEL_DIR, 'cp_current.tar')
self.fast_save_CP(cp_fn)
if self.cfg.TGT_LOSS.CAL_out:
proto_path = os.path.join(self.cfg.TRAIN.MODEL_DIR, 'cp_out_iter_{}.tar'.format(self.c_iter))
self.out_class_center.save(proto_path)
# If you want save model checkpoint, set cfg.TRAIN.SAVE_MORE_ITER = True
if self.c_iter > self.cfg.TRAIN.SAVE_ITER and self.cfg.TRAIN.SAVE_MORE_ITER:
cp_fn = os.path.join(self.cfg.TRAIN.MODEL_DIR, 'cp_{}_iter.tar'.format(self.c_iter))
self.fast_save_CP(cp_fn)
tgt_sp_iou = self.tgt_valer.rolling_predict(self.net_G, self.old_G, self.c_iter, domain='tgt')
if (tgt_sp_iou > self.best_IoU_after_saveIter and self.c_iter > self.cfg.TRAIN.SAVE_ITER) or \
tgt_sp_iou > self.ml_info['bt_tgt_spIoU']:
s_name = 'target_Sp'
if (tgt_sp_iou > self.best_IoU_after_saveIter and self.c_iter > self.cfg.TRAIN.SAVE_ITER):
# 由于点云GAN不稳定,有时候好的结果在最开始出现,所以添加这个if
self.best_IoU_after_saveIter = tgt_sp_iou
s_name = 'target_Sp_After'
self.best_IoU_iter = self.c_iter
self.ml_info['bt_tgt_spIoU'] = tgt_sp_iou
wandb.run.summary["bt_tgt_spIoU"] = tgt_sp_iou
com.save_best_check(self.net_G, self.net_D,
self.G_optim, self.D_optim, None,
self.c_iter, self.logger,
self.cfg.TRAIN.MODEL_DIR, name=s_name,
iou=tgt_sp_iou)
torch.cuda.empty_cache()
def save_log(self):
self.wb_dict['lr/lr_G'] = self.G_optim.state_dict()['param_groups'][0]['lr']
self.wb_dict['lr/lr_D'] = self.D_optim.state_dict()['param_groups'][0]['lr']
for k, v in self.wb_dict.items():
self.tf_writer.add_scalar(k, v, self.c_iter)
wandb.log({k: v}, step=self.c_iter)
def set_zero_grad(self):
self.net_G.train() # set model to training mode
self.net_D.train()
self.G_optim.zero_grad()
self.old_G.eval()
for param in self.net_D.parameters():
param.requires_grad = False
def set_lr(self):
current_lr_G = adjust_learning_rate(self.cfg.OPTIMIZER.LEARNING_RATE_G,
self.c_iter, self.cfg.TRAIN.MAX_ITERS,
self.cfg.TRAIN.PREHEAT_STEPS)
current_lr_D = adjust_learning_rate_D(self.cfg.OPTIMIZER.LEARNING_RATE_D,
self.c_iter, self.cfg.TRAIN.MAX_ITERS,
self.cfg.TRAIN.PREHEAT_STEPS)
for index in range(len(self.G_optim.param_groups)):
self.G_optim.param_groups[index]['lr'] = current_lr_G
for index in range(len(self.D_optim.param_groups)):
self.D_optim.param_groups[index]['lr'] = current_lr_D
def update_ema_variables(self, ema_net, net):
alpha_teacher = min(1 - 1 / (self.c_iter + 1), self.cfg.MEAN_TEACHER.alpha_ema)
self.cur_alpha_teacher = alpha_teacher
for ema_param, param in zip(ema_net.parameters(), net.parameters()):
ema_param.data.mul_(alpha_teacher).add_(param.data, alpha=1 - alpha_teacher)
for t, s in zip(ema_net.buffers(), net.buffers()):
if not t.dtype == torch.int64:
t.data.mul_(alpha_teacher).add_(s.data, alpha=1 - alpha_teacher)
def create_ema_model(self, ema, net):
print('create_ema_model G to current iter {}'.format(self.c_iter))
for param_q, param_k in zip(net.parameters(), ema.parameters()):
param_k.data = param_q.data.clone()
for buffer_q, buffer_k in zip(net.buffers(), ema.buffers()):
buffer_k.data = buffer_q.data.clone()
ema.eval()
for param in ema.parameters():
param.requires_grad_(False)
for param in ema.parameters():
param.detach_()
@staticmethod
def send_data2GPU(batch_data):
for key in batch_data: # send data to gpu
batch_data[key] = batch_data[key].cuda(non_blocking=True)
return batch_data
def fast_save_CP(self, checkpoint_file):
com.save_checkpoint(checkpoint_file,
self.net_G, self.net_D,
self.G_optim, self.D_optim,
None,
self.c_iter)
def init_dataloader(self):
# init source dataloader
if self.cfg.DATASET_SOURCE.TYPE == "SynLiDAR":
from dataset.SynLiDAR_trainSet import SynLiDAR_Dataset
src_tra_dset = SynLiDAR_Dataset(self.cfg, 'training')
src_val_dset = SynLiDAR_Dataset(self.cfg, 'validation')
self.src_TraDL, self.src_ValDL = get_TV_dl(self.cfg, src_tra_dset, src_val_dset)
if self.cfg.DATASET_TARGET.TYPE == "SemanticKITTI":
from dataset.semkitti_trainSet import SemanticKITTI
t_tra_dset = SemanticKITTI(self.cfg, 'training')
t_val_dset = SemanticKITTI(self.cfg, 'validation')
elif self.cfg.DATASET_TARGET.TYPE == "SemanticPOSS":
from dataset.SemanticPoss_trainSet import semPoss_Dataset
t_tra_dset = semPoss_Dataset(self.cfg, 'training')
t_val_dset = semPoss_Dataset(self.cfg, 'validation')
self.tgt_train_loader, _ = get_TV_dl(self.cfg, t_tra_dset, t_val_dset, domain='target')
# init validater
self.src_valer = validater(self.cfg, self.cfg.DATASET_SOURCE.TYPE, 'source', self.criterion, self.tf_writer, self.logger)
self.tgt_valer = validater(self.cfg, self.cfg.DATASET_TARGET.TYPE, 'target', self.criterion, self.tf_writer, self.logger)