-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_performance.py
174 lines (152 loc) · 5.69 KB
/
eval_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import os
import sys
import yaml
import argparse
import numpy as np
from tqdm import tqdm
from utils.np_ioueval import iouEval
def get_args():
parser = argparse.ArgumentParser("./evaluate_semantics.py")
parser.add_argument(
'--dataset', '-d',
type=str,
default='~/dataset/semanticKITTI/dataset/sequences',
help='Dataset dir. No Default',
)
parser.add_argument(
'--predictions', '-p',
type=str,
default='res_pred/syn2Sk_cudnn_lov_sourceOnly_DDP_Sp',
help='Prediction dir. Same organization as dataset, but predictions in'
'each sequences "prediction" directory. No Default. If no option is set'
' we look for the labels in the same directory as dataset'
)
parser.add_argument(
'--sequences', # '-l',
nargs="+",
default= ['08'] ,
help='evaluated sequences',
)
parser.add_argument(
'--num-classes', '-nc',
type=int,
default=20,
help='The number of the classes of this dataset',
)
parser.add_argument(
'--datacfg', '-dc',
type=str,
required=False,
default="utils/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--limit', '-l',
type=int,
required=False,
default=None,
help='Limit to the first "--limit" points of each scan. Useful for'
' evaluating single scan from aggregated pointcloud.'
' Defaults to %(default)s',
)
FLAGS = parser.parse_args()
# fill in real predictions dir
if FLAGS.predictions is None:
FLAGS.predictions = FLAGS.dataset
return FLAGS
def load_label(data_root, sequences, sub_dir_name, ext):
label_names = []
for sequence in sequences:
sequence = '{0:02d}'.format(int(sequence))
label_paths = os.path.join(data_root, str(sequence), sub_dir_name)
# populate the label names
seq_label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn if f".{ext}" in f]
seq_label_names.sort()
label_names.extend(seq_label_names)
return label_names
if __name__ == '__main__':
FLAGS = get_args()
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Data: ", FLAGS.dataset)
print("Predictions: ", FLAGS.predictions)
print("Sequences: ", FLAGS.sequences)
print("Config: ", FLAGS.datacfg)
print("Limit: ", FLAGS.limit)
print("*" * 80)
print("Opening data config file %s" % FLAGS.datacfg)
DATA = yaml.safe_load(open(FLAGS.datacfg, 'r'))
remap_dict = DATA["learning_map"]
max_key = max(remap_dict.keys())
remap_lut = np.zeros((max_key + 100), dtype=np.int32)
remap_lut[list(remap_dict.keys())] = list(remap_dict.values())
# get number of interest classes, and the label mappings
class_strings = DATA["labels"]
class_ignore = DATA["learning_ignore"]
# class_inv_remap = DATA["learning_map_inv"]
nr_classes = FLAGS.num_classes # len(class_inv_remap)
# create evaluator
ignore = []
for cl, ign in class_ignore.items():
if ign:
x_cl = int(cl)
ignore.append(x_cl)
print("Ignoring xentropy class ", x_cl, " in IoU evaluation")
# create evaluator
evaluator = iouEval(nr_classes, ignore)
evaluator.reset()
# get label paths
dataset_path = os.path.expanduser(FLAGS.dataset)
label_names = load_label(FLAGS.dataset, FLAGS.sequences, "labels", "label")
pred_names = load_label(
FLAGS.predictions, FLAGS.sequences, "predictions", "npy")
assert(len(label_names) == len(pred_names))
print("Evaluating sequences")
N = len(label_names)
# open each file, get the tensor, and make the iou comparison
for i in tqdm(range(N), ncols=50):
label_file = label_names[i]
pred_file = pred_names[i]
# open label
label = np.fromfile(label_file, dtype=np.int32)
label = label.reshape((-1)).astype(np.int32)
# label = np.load(label_file).astype(np.int32)
label = label & 0xFFFF # semantic label in lower half
label = remap_lut[label]
# label = label & 0xFFFF
if FLAGS.limit is not None:
label = label[:FLAGS.limit] # limit to desired length
# open prediction
# pred = np.load(pred_file)
pred = np.load(pred_file).astype(np.int32)
pred = pred.reshape((-1)) # reshape to vector
if FLAGS.limit is not None:
pred = pred[:FLAGS.limit] # limit to desired length
# add single scan to evaluation
evaluator.addBatch(pred, label)
# when I am done, print the evaluation
m_accuracy = evaluator.getacc()
m_jaccard, class_jaccard = evaluator.getIoU()
print('Validation set:\n'
'Acc avg {m_accuracy:.3f}\n'
'IoU avg {m_jaccard:.3f}'.format(m_accuracy=m_accuracy, m_jaccard=m_jaccard))
# print also classwise
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
print('IoU class {i:} [{class_str:}] = {jacc:.3f}'.format(
i=i, class_str=class_strings[i], jacc=jacc))
# print for spreadsheet
print("*" * 80)
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
sys.stdout.write('{jacc:.3f}'.format(jacc=jacc.item()))
sys.stdout.write(",")
sys.stdout.write('{jacc:.3f}'.format(jacc=m_jaccard.item()))
sys.stdout.write(",")
sys.stdout.write('{acc:.3f}'.format(acc=m_accuracy.item()))
sys.stdout.write('\n')
sys.stdout.flush()