-
Notifications
You must be signed in to change notification settings - Fork 36
/
MobileNetV2.py
308 lines (259 loc) · 13.8 KB
/
MobileNetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# reference:
# https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/MobileNetV2.py
# https://arxiv.org/pdf/1801.04381.pdf
import torch
from torch import nn
from torch.nn.functional import affine_grid, grid_sample
from torch.utils.checkpoint import checkpoint
from models.common import SpatialChannelSqueezeExcitation
from .BaseModels import BaseModule, Conv_block
from .partial_convolution import partial_convolution_block
use_cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
Tensor = FloatTensor
class MobileNetV2(BaseModule):
def __init__(self, width_mult=1, activation=nn.ReLU6(), bias=False, add_sece=False, add_partial=False,
image_channel=3):
super(MobileNetV2, self).__init__()
self.add_partial = add_partial
# self.conv_block = Conv_block
self.res_block = InvertedResidual if not add_partial else PartialInvertedResidual
self.act_fn = activation
self.bias = bias
self.width_mult = width_mult
self.out_stride = 32 # 1/32 of input size
self.image_channel = image_channel
self.inverted_residual_setting = [
# t, c, n, s, dial
[1, 16, 1, 1, 1],
[6, 24, 2, 2, 1],
[6, 32, 3, 2, 1],
[6, 64, 4, 2, 1],
[6, 96, 3, 1, 1],
[6, 160, 3, 2, 1],
[6, 320, 1, 1, 1],
]
self.last_channel = 0 # last one is avg pool
self.features = self.make_inverted_resblocks(self.inverted_residual_setting, add_sece)
def make_inverted_resblocks(self, settings, add_sece):
in_channel = self._make_divisible(32 * self.width_mult, divisor=8)
# first_layer
features = [nn.Sequential(*Conv_block(self.image_channel, in_channel, kernel_size=3, stride=2,
padding=(3 - 1) // 2, bias=self.bias,
BN=True, activation=self.act_fn))]
for t, c, n, s, d in settings:
out_channel = self._make_divisible(c * self.width_mult, divisor=8)
# out_channel = int(c * self.width_mult)
block = []
for i in range(n):
if i == 0:
block.append(self.res_block(in_channel, out_channel, s, t, d,
activation=self.act_fn, bias=self.bias, add_sece=add_sece))
else:
block.append(self.res_block(in_channel, out_channel, 1, t, d,
activation=self.act_fn, bias=self.bias, add_sece=add_sece))
in_channel = out_channel
features.append(nn.Sequential(*block))
# last layer
self.last_channel = out_channel
return nn.Sequential(*features)
def load_pre_train_checkpoint(self, pre_train_checkpoint, free_last_blocks):
if pre_train_checkpoint:
if isinstance(pre_train_checkpoint, str):
self.load_state_dict(torch.load(pre_train_checkpoint, map_location='cpu'))
else:
self.load_state_dict(pre_train_checkpoint)
print("Encoder check point is loaded")
else:
print("No check point for the encoder is loaded. ")
if free_last_blocks >= 0:
self.freeze_params(free_last_blocks)
else:
print("All layers in the encoders are re-trained. ")
def freeze_params(self, free_last_blocks=2):
# the last 4 blocks are changed from stride of 2 to dilation of 2
for i in range(len(self.features) - free_last_blocks):
for params in self.features[i].parameters():
params.requires_grad = False
print("{}/{} layers in the encoder are freezed.".format(len(self.features) - free_last_blocks,
len(self.features)))
@staticmethod
def _make_divisible(v, divisor=8, min_value=None):
# https://github.com/tensorflow/models/blob/7367d494135368a7790df6172206a58a2a2f3d40/research/slim/nets/mobilenet/mobilenet.py#L62
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def forward(self, x):
return self.features(x)
def forward_checkpoint(self, x):
with self.set_activation_inplace():
return checkpoint(self.forward, x)
class InvertedResidual(BaseModule):
def __init__(self, in_channel, out_channel, stride, expand_ratio, dilation,
activation=nn.ReLU6(), bias=False, add_sece=False):
super(InvertedResidual, self).__init__()
# self.conv_bloc = Conv_block
self.stride = stride
self.act_fn = activation
self.bias = bias
self.in_channels = in_channel
self.out_channels = out_channel
# assert stride in [1, 2]
self.res_connect = self.stride == 1 and in_channel == out_channel
self.conv = self.make_body(in_channel, out_channel, stride, expand_ratio, dilation, add_sece)
def make_body(self, in_channel, out_channel, stride, expand_ratio, dilation, add_sece):
# standard convolution
mid_channel = in_channel * expand_ratio
m = Conv_block(in_channel, mid_channel,
1, 1, 0, bias=self.bias,
BN=True, activation=self.act_fn)
# depth-wise separable convolution
m += Conv_block(mid_channel, mid_channel, 3, stride, padding=1 + (dilation - 1),
dilation=dilation, groups=mid_channel, bias=self.bias,
BN=True, activation=self.act_fn)
# linear to preserve info : see the section: linear bottleneck. Removing the activation improves the result
m += Conv_block(mid_channel, out_channel, 1, 1, 0, bias=self.bias, BN=True, activation=None)
if add_sece:
m += [SpatialChannelSqueezeExcitation(out_channel, reduction=16, activation=self.act_fn)]
return nn.Sequential(*m)
def forward(self, x):
if self.res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class PartialInvertedResidual(BaseModule):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, expansion=1, BN=True, activation=True, bias=False,
use_1_conv=False, no_holes_1_conv=False, same_holes=False,
*args, **kwargs):
super(PartialInvertedResidual, self).__init__()
self.res_connect = stride == 1 and in_channels == out_channels
self.conv = self.make_body(in_channels, out_channels, kernel_size, stride, padding,
dilation, expansion, BN, activation, bias,
use_1_conv, no_holes_1_conv, same_holes)
@staticmethod
def make_body(in_channels, out_channels, kernel_size, stride, padding,
dilation, expansion, BN, activation, bias,
use_1_conv, no_holes_1_conv, same_holes):
mid_channel = int(in_channels * expansion)
layer = [partial_convolution_block(in_channels, mid_channel, 1, 1, 0, 1,
BN=BN, activation=activation, bias=bias,
use_1_conv=use_1_conv, no_holes_1_conv=no_holes_1_conv)]
layer += [partial_convolution_block(mid_channel, mid_channel, kernel_size, stride, padding, dilation,
groups=mid_channel, BN=BN, activation=activation, bias=bias,
same_holes=same_holes)]
layer += [partial_convolution_block(mid_channel, out_channels, 1, 1, 0, 1,
BN=BN, activation=None, bias=bias,
use_1_conv=use_1_conv, no_holes_1_conv=no_holes_1_conv)]
return nn.Sequential(*layer)
def forward(self, args):
x, mask = args
out_x, out_mask = self.conv((x, mask))
if self.res_connect:
out_x = x + out_x
out_mask = out_mask
# out_mask = torch.clamp(out_mask, min=0, max=1)
return out_x, out_mask
class DilatedMobileNetV2(MobileNetV2):
def __init__(self, width_mult=2, activation=nn.ReLU6(), bias=False, add_sece=False, add_partial=False,
image_channel=3):
super(DilatedMobileNetV2, self).__init__(width_mult=width_mult, activation=activation,
bias=bias, add_sece=add_sece, add_partial=add_partial,
image_channel=image_channel)
self.add_partial = add_partial
self.bias = bias
self.width_mult = width_mult
self.act_fn = activation
self.out_stride = 8
self.image_channel = image_channel
# # Rethinking Atrous Convolution for Semantic Image Segmentation
self.inverted_residual_setting = [
# t, c, n, s, dila # input output
[1, 16, 1, 1, 1], # 1/2 ---> 1/2
[6, 24, 2, 2, 1], # 1/2 ---> 1/4
[6, 32, 3, 2, 1], # 1/4 ---> 1/8
[6, 64, 4, 1, 2], # <-- add astrous conv and keep 1/8
[6, 96, 3, 1, 4],
[6, 160, 3, 1, 8],
[6, 320, 1, 1, 16],
]
self.features = self.make_inverted_resblocks(self.inverted_residual_setting, add_sece=add_sece)
class MobileNetV2Classifier(BaseModule):
def __init__(self, num_class, width_mult=2, add_sece=False):
super(MobileNetV2Classifier, self).__init__()
self.num_class = num_class
self.act_fn = nn.LeakyReLU(0.3, inplace=True) # nn.SELU(inplace=True)
self.encoder = DilatedMobileNetV2(width_mult=width_mult, activation=self.act_fn,
bias=False, add_sece=add_sece, add_partial=False)
# if width multiple is 1.4, then there are 944 channels
cat_feat_num = sum([i[0].out_channels for i in self.encoder.features[3:]])
# self.conv_classifier = self.make_conv_classifier(cat_feat_num, num_class)
self.feature_conv = InvertedResidual(cat_feat_num, num_class, stride=1, expand_ratio=1, dilation=1,
activation=self.act_fn, bias=False,
add_sece=True)
self.global_avg = nn.AdaptiveAvgPool2d(1)
lstm_hidden = 256
self.lstm = nn.LSTM(num_class, lstm_hidden, num_layers=1, batch_first=True)
self.lstm_linear_z = nn.Sequential(nn.Linear(lstm_hidden, lstm_hidden // 4), self.act_fn)
self.lstm_linear_score = nn.Linear(lstm_hidden, num_class)
self.st_theta_linear = nn.Sequential(nn.Linear(lstm_hidden // 4, 2 * 3))
self.anchor_box = FloatTensor([(0, 0), (0.4, 0.4), (0.4, -0.4), (-0.4, -0.4), (-0.4, 0.4)
])
def cnn_lstm_classifier(self, input_img):
# Multi-label Image Recognition by Recurrently Discovering Attentional Regions by Wang, chen, Li, Xu, and Lin
# LSTM input: step size is one, feature size is num_class (channels)
img = input_img
batch = input_img.size(0)
category_scores = []
transform_box = []
# h = c = torch.zeros(1, batch, self.lstm.hidden_size).cuda()
features = self.global_avg(img).view(batch, 1, -1)
y, (h, c) = self.lstm(features)
# s = self.lstm_linear_score(y.view(batch, -1))
# category_scores.append(s)
for i in range(4 + 1): # 4 anchor points and repeated 4 times
z = self.lstm_linear_z(h.transpose(0, 1).view(batch, -1)) # y.view(batch, -1)
st_theta = self.st_theta_linear(z).view(batch, 2, 3)
st_theta[:, :, -1] = st_theta[:, :, -1].clone() + self.anchor_box[i]
st_theta[:, 1, 0] = 0 * st_theta[:, 1, 0].clone()
st_theta[:, 0, 1] = 0 * st_theta[:, 0, 1].clone()
transform_box.append(st_theta)
img = self.spatial_transformer(input_img, st_theta)
features = self.global_avg(img).view(batch, 1, -1)
# y.size = batch, seq_len (1) , num_direc*hidden_size
# h, c size = num_layer*bi-direc, batch, hidden_size
y, (h, c) = self.lstm(features, (h, c))
s = self.lstm_linear_score(
y.view(batch, -1)) # the paper use the hidden state to get scores h.transpose(0, 1).view(batch, -1)
category_scores.append(s)
category_scores = torch.stack(category_scores, dim=1) # size: batch, category regions, category
transform_box = torch.stack(transform_box, dim=1) # the first one is free. size: batch, regions, 2,3
return category_scores, transform_box
@staticmethod
def spatial_transformer(input_image, theta):
# reference: Spatial Transformer Networks https://arxiv.org/abs/1506.02025
# https://blog.csdn.net/qq_39422642/article/details/78870629
grids = affine_grid(theta, input_image.size())
output_img = grid_sample(input_image, grids)
return output_img
def forward(self, x):
for layer in self.encoder.features[:3]:
x = layer(x)
feature_maps = []
for layer in self.encoder.features[3:]:
x = layer(x)
feature_maps.append(x)
# all feature maps are 1/8 of input size
x = torch.cat(feature_maps, dim=1)
del feature_maps
x = self.feature_conv(x)
category_scores, transform_box = self.cnn_lstm_classifier(x)
return category_scores, transform_box
def predict(self, category_scores):
scores, index = category_scores.max(1)
return scores