-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathscaler.py
39 lines (30 loc) · 1.16 KB
/
scaler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
""" CUDA / AMP utils
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
try:
from apex import amp
has_apex = True
except ImportError:
amp = None
has_apex = False
class AccumulativeScaler:
state_dict_key = "amp_scaler"
def __init__(self, forward_time=8):
self._scaler = torch.cuda.amp.GradScaler()
self.forward_time = forward_time
def set_iters(self, iteration):
self.iteration = iteration
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False):
self._scaler.scale(loss).backward(create_graph=create_graph)
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
if (self.iteration+1) % self.forward_time == 0:
self._scaler.step(optimizer)
self._scaler.update()
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)