-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
163 lines (131 loc) · 5.65 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import os
import yaml
from PIL import Image
import numpy as np
import json as jsonmod
from ipdb import set_trace
import random
from tqdm import tqdm,trange
import numpy as np
import cv2
from PIL import Image
from pylab import*
import argparse
# os.environ["CUDA_VISIBLE_DEVICES"] = '3'
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class FlickrDataset(data.Dataset):
"""
Dataset loader for Flickr30k and Flickr8k full datasets.
"""
def __init__(self, root, json, split, transform=None,ids_=None):
self.root = root
self.split = split
self.transform = transform
self.dataset = jsonmod.load(open(json, 'r'))['images']
self.ids = []
for i, d in enumerate(self.dataset):
if d['split'] == split:
#五个句子
self.ids += [(i, x) for x in range(len(d['sentences']))]
#一个句子
# self.ids += [(i, random.randint(0, len(d['sentences'])-1))]
# self.ids += [(i, x) for x in range(len(d['sentences']))]
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
root = self.root
ann_id = self.ids[index]
img_id = ann_id[0]
cap_id = ann_id[1]
caption = self.dataset[img_id]['sentences'][cap_id]['raw']
# set_trace()
path = self.dataset[img_id]['filename']
image = Image.open(os.path.join(root, path)).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image, caption ,img_id
def __len__(self):
return len(self.ids)
def collate_fn(data):
"""Build mini-batch tensors from a list of (image, caption) tuples.
Args:
data: list of (image, caption) tuple.
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded caption.
"""
# Sort a data list by caption length
data.sort(key=lambda x: len(x[1]), reverse=True)
images,captions,iids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
return images,captions,iids
def get_loader_single(split, root, json, transform,
batch_size=100, shuffle=True,
num_workers=0, ids=None, collate_fn=collate_fn):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dataset = FlickrDataset(root=root,
split=split,
json=json,
transform=transform,
ids_=ids)
print("-------------------- "+ split + ": " + str(len(dataset)) + " ------------------------------")
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
pin_memory=True,
num_workers=num_workers,
collate_fn=collate_fn)
return data_loader
def get_transform(split_name):
normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
t_list = []
t_list = [transforms.Resize(224)]
t_end = [transforms.ToTensor(), normalizer]
transform = transforms.Compose(t_list + t_end)
return transform
def get_loaders(batch_size, opt):
# Build Dataset Loader
transform = get_transform('train')
train_loader = get_loader_single( 'train',
opt["dataset"]["data_image"],
opt["dataset"]["data_json"],
transform,
batch_size=batch_size, shuffle=True,
collate_fn=collate_fn)
transform = get_transform('val')
val_loader = get_loader_single( 'val',
opt["dataset"]["data_image"],
opt["dataset"]["data_json"],
transform,
batch_size=batch_size, shuffle=False,
collate_fn=collate_fn)
transform = get_transform('test')
test_loader = get_loader_single( 'test',
opt["dataset"]["data_image"],
opt["dataset"]["data_json"],
transform,
batch_size=1, shuffle=False,
collate_fn=collate_fn)
if opt["dataset"]["data_json"].split("/")[-2] == "RSITMD":
# set_trace()
val_loader = test_loader
return train_loader, val_loader, test_loader
if __name__ == '__main__':
# os.environ["CUDA_VISIBLE_DEVICES"] = '3'
options = parser_options()
train_loader, val_loader, test_loader = get_loaders(options["dataset"]["batch_size"], options)
for step, (image,text) in tqdm(enumerate(train_loader), leave=False):
print(image.shape)
# print(text)
for step, (image,text) in tqdm(enumerate(test_loader), leave=False):
print(image.shape)
# print(text)