-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
155 lines (149 loc) · 6.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
from torch import nn
import pytorch_lightning as pl
from data_provider.data_factory import data_provider
from args import initialize_args
from utils.logtool import print_config, print_header, print_train, set_wandb
from experiments import train_model, inference_model
from utils.evaluation import SlitPhyLoss, PinBallLoss, rmse_loss, MSEPinballLoss, MultiPinBallLoss, masked_gaussian_nll_loss
from omegaconf import OmegaConf
from model.regist_model import model_dict
from utils.report_results import report_error, load_prediction
import numpy as np
if __name__ == "__main__":
args = initialize_args()
args.exp_id = f'{args.input_len}-{args.pred_len}-{args.look_back}-{args.slide_step}-{args.input_features}-{args.target_features}-t_mark-{args.t_mark}-pos_mark-{args.pos_mark}-seed-{args.seed}'
if args.unknown_nodes_path:
per = args.unknown_nodes_path.split('/')[-1].split('_')[-1].split(
'.')[0]
if '%' in per:
args.exp_id = f'{args.dloader_name}-{per}-{args.exp_id}'
else:
args.exp_id = f'{args.dloader_name}-{args.exp_id}'
if args.model == 'woMoERNN':
if args.mean_expert and args.weight_expert and args.max_expert and args.min_expert and args.diffusion_expert:
model_wo = 'avg'
elif args.mean_expert:
model_wo = 'mean'
elif args.weight_expert:
model_wo = 'weight'
elif args.max_expert:
model_wo = 'max'
elif args.min_expert:
model_wo = 'min'
elif args.diffusion_expert:
model_wo = 'diffusion'
else:
raise NotImplementedError
args.exp_id = f'{args.model}-{model_wo}-{args.exp_id}'
else:
args.exp_id = f'{args.model}-{args.exp_id}'
wandb = set_wandb(args)
configs = OmegaConf.create(vars(args))
pl.seed_everything(args.seed)
slide_step = args.slide_step
args.slide_step = 1 # use 1 for train to collect more data
train_loader = data_provider(args, 'train')
args.slide_step = slide_step
val_loader = data_provider(args, 'val')
test_loader = data_provider(args, 'test')
data_loaders = dict(
zip(['train', 'val', 'test'], [train_loader, val_loader, test_loader]))
loss_candidate = dict(
zip([
'mse', 'huber', 'mae', 'rmse', 'msepinball', 'multipinball', 'nll'
], [
nn.MSELoss(),
nn.HuberLoss(),
nn.L1Loss(),
MSEPinballLoss(),
MultiPinBallLoss(), masked_gaussian_nll_loss
]))
loss = loss_candidate[args.loss]
criterions = dict(
zip([args.loss, 'split_phy_loss'],
[loss, SlitPhyLoss(features=args.target_features)]))
model = model_dict[args.model].Model(args).float()
if args.test_for_changed or args.inference_only:
args.best_checkpoint_path = args.best_checkpoint_path + args.exp_id + '/'
if args.pretrained_model_path is None:
try:
model_dict = torch.load(
args.best_checkpoint_path +
'best_val_checkpoint.pth')['state_dict']
print(f'load pretrained from {args.best_checkpoint_path}')
except FileNotFoundError:
model_dict = torch.load(
args.best_checkpoint_path +
'best_train_checkpoint.pth')['state_dict']
print(f'load pretrained from {args.best_checkpoint_path}')
model.load_state_dict(model_dict)
else:
model = torch.load(args.pretrained_model_path)
model.to(args.device).float()
args.slide_step = 12
test_loader = data_provider(args, 'test')
inference_model(model, test_loader, args, criterions)
exit()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
args.num_params = sum([np.prod(p.size()) for p in model_parameters])
optimizers = {
'adamw': torch.optim.AdamW,
'adam': torch.optim.Adam,
'sgd': torch.optim.SGD
}
optimizer = optimizers[args.optimizer](model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
schdulers = {
'cosine': torch.optim.lr_scheduler.CosineAnnealingLR,
'step': torch.optim.lr_scheduler.StepLR,
'plateau': torch.optim.lr_scheduler.ReduceLROnPlateau
}
if args.scheduler == 'plateau':
scheduler = schdulers[args.scheduler](optimizer,
mode='min',
factor=0.5,
min_lr=1e-5,
patience=args.scheduler_patience)
elif args.scheduler == 'cosine':
scheduler = schdulers[args.scheduler](optimizer, T_max=5, eta_min=1e-7)
elif args.scheduler == 'step':
scheduler = schdulers[args.scheduler](
optimizer,
step_size=args.scheduler_patience,
gamma=0.5,
)
else:
class NullScheduler:
def step(self, loss):
pass
scheduler = NullScheduler()
if args.verbose:
print_header('*** Model Configurations ***')
print(model)
print_header('*** Experiment Configurations *** ')
print_config(configs)
print_train(args)
print(f'├── train data dim: {len(train_loader.dataset)}') #type:ignore
print(f'├── val data dim: {len(val_loader.dataset)}') #type:ignore
print(f'└── test data dim: {len(test_loader.dataset)}') #type:ignore
pretrained = train_model(
model=model,
optimizer=optimizer,
scheduler=scheduler,
data_loaders=data_loaders,
criterions=criterions,
args=args,
wandb=wandb,
)
if args.save_model:
import os
if not os.path.exists('./pretrained'):
os.makedirs('./pretrained')
torch.save(pretrained, f'./pretrained/{args.exp_id}.pth')
path = f'{args.best_prediction_path}best_total_y.pkl'
y_pred, y, AAS, VS, FS, NAS = load_prediction(path, 'val')
report_error(y_pred, y, AAS, VS, FS, NAS,
f'{args.model}-{args.dloader_name}', './reports.csv')
print("-> Done!")