-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathm_hatch.m
319 lines (266 loc) · 8.35 KB
/
m_hatch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
function [xi,yi,x,y]=m_hatch(lon,lat,varargin);
% M_HATCH Draws hatched or speckled interiors to a patch
%
% M_HATCH(LON,LAT,STYL,ANGLE,STEP,...line parameters);
%
% INPUTS:
% X,Y - vectors of points.
% STYL - style of fill
% ANGLE,STEP - parameters for style
%
% E.g.
%
% 'single',45,5 - single cross-hatch, 45 degrees, 5 points apart
% 'cross',40,6 - double cross-hatch at 40 and 90+40, 6 points apart
% 'speckle',7,1 - speckled (inside) boundary of width 7 points, density 1
% (density >0, .1 dense 1 OK, 5 sparse)
% 'outspeckle',7,1 - speckled (outside) boundary of width 7 points, density 1
% (density >0, .1 dense 1 OK, 5 sparse)
%
%
% H=M_HATCH(...) returns handles to hatches/speckles.
%
% [XI,YI,X,Y]=MHATCH(...) does not draw lines - instead it returns
% vectors XI,YI of the hatch/speckle info, and X,Y of the original
% outline modified so the first point==last point (if necessary).
%
% Note that inside and outside speckling are done quite differently
% and 'outside' speckling on large coastlines can be very slow.
%
% If you get weird results - try putting an M_LINE(LON,LAT) call *before*
% (or otherwise set the plot axis xlim/ylim parameters - this is necessary
% because otherwise M_HATCH can't properly determine the 'points' units).
%
%
% Hatch Algorithm originally by K. Pankratov, with a bit stolen from
% Iram Weinsteins 'fancification'. Speckle modifications by R. Pawlowicz.
%
% R Pawlowicz 15/Dec/2005
%% 4/DEc/11 - isstr to ischar
% Apr/12 - handle NaN-separated coastlines
styl='speckle';
angle=7;
step=1/2;
if length(varargin)>0 & ischar(varargin{1}),
styl=varargin{1};
varargin(1)=[];
end;
if length(varargin)>0 & ~ischar(varargin{1}),
angle=varargin{1};
varargin(1)=[];
end;
if length(varargin)>0 & ~ischar(varargin{1}),
step=varargin{1};
varargin(1)=[];
end;
% If we have a naN-separated multi-line input vector:
ii=find(isnan(lon));
if any(ii),
% if there isn't a NaN to mark the first or last segments
if ii(1)>1, ii=[1;ii(:)]; end;
if ii(end)<length(lon), ii=[ii(:);length(lon)]; end;
% Compute the info, but don't draw - otherwise we end up with
% lots of 'childred' to the plot and it is SLOWWWWW
xi=[];yi=[];x=[];y=[];
for k=1:length(ii)-1,
[xiT,yiT,xT,yT]=m_hatch(lon(ii(k)+1:ii(k+1)-1),lat(ii(k)+1:ii(k+1)-1),styl,angle,step,varargin{:});
xi=[xi,NaN,xiT];
yi=[yi,NaN,yiT];
x=[x,NaN,xT];
y=[y,NaN,yT];
end;
% OK, so now plot it all.
if nargout<2,
switch lower(styl),
case {'single','cross'},
xi=line(xi,yi,varargin{:});
case {'speckle','outspeckle'},
xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:});
end;
end;
return;
end;
%----------------------
% otherwise, handle a single line without NaN
[x,y,I]=m_ll2xy(lon,lat,'clip','patch');
%% plot(x,y,'color','r');%%pause;
if x(end)~=x(1) | y(end)~=y(1), % & to |
x=x([1:end 1]);
y=y([1:end 1]);
I=I([1:end 1]);
end;
if strcmp(styl,'speckle') | strcmp(styl,'outspeckle'),
angle=angle*(1-I);
end;
if size(x,1)~=1,
x=x(:)';
angle=angle(:)';
end;
if size(y,1)~=1,
y=y(:)';
end;
% Code stolen from Weinstein hatch
oldu = get(gca,'units');
set(gca,'units','points');
sza = get(gca,'position'); sza = sza(3:4);
set(gca,'units',oldu) % Set axes units back
xlim = get(gca,'xlim');
ylim = get(gca,'ylim');
xsc = sza(1)/(xlim(2)-xlim(1)+eps);
ysc = sza(2)/(ylim(2)-ylim(1)+eps);
switch lower(styl),
case 'single',
[xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,0);
if nargout<2,
xi=line(xi,yi,varargin{:});
end;
case 'cross',
[xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,0);
[xi2,yi2]=drawhatch(x,y,angle+90,step,xsc,ysc,0);
xi=[xi,xi2];
yi=[yi,yi2];
if nargout<2,
xi=line(xi,yi,varargin{:});
end;
case 'speckle',
[xi,yi ] =drawhatch(x,y,45, step,xsc,ysc,angle);
[xi2,yi2 ]=drawhatch(x,y,45+90,step,xsc,ysc,angle);
xi=[xi,xi2];
yi=[yi,yi2];
if nargout<2,
if any(xi),
xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:});
else
xi=NaN;yi=NaN;
end;
end;
case 'outspeckle',
[xi,yi ] =drawhatch(x,y,45, step,xsc,ysc,-angle);
[xi2,yi2 ]=drawhatch(x,y,45+90,step,xsc,ysc,-angle);
xi=[xi,xi2];
yi=[yi,yi2];
% disp([size(xi) size(yi)])
inside=logical(inpolygon(xi,yi,x,y)); % logical needed for v6!
xi(inside)=[];yi(inside)=[];
if nargout<2,
if any(xi),
xi=line(xi,yi,'marker','.','linestyle','none','markersize',2,varargin{:});
else
xi=NaN;yi=NaN;
end;
end;
end;
return
%%%%%
function [xi,yi]=drawhatch(x,y,angle,step,xsc,ysc,speckle);
%
% This is the guts.
%
angle=angle*pi/180;
% Idea here appears to be to rotate everthing so lines will be
% horizontal, and scaled so we go in integer steps in 'y' with
% 'points' being the units in x.
% Center it for "good behavior".
ca = cos(angle); sa = sin(angle);
x0 = mean(x); y0 = mean(y);
x = (x-x0)*xsc; y = (y-y0)*ysc;
yi = x*ca+y*sa; % Rotation
y = -x*sa+y*ca;
x = yi;
y = y/step; % Make steps equal to one
% Compute the coordinates of the hatch line ...............
yi = ceil(y);
yd = [diff(yi) 0]; % when diff~=0 we are crossing an integer
fnd = find(yd); % indices of crossings
dm = max(abs(yd)); % max possible #of integers between points
%
% This is going to be pretty space-inefficient if the line segments
% going in have very different lengths. We have one column per line
% interval and one row per hatch line within that interval.
%
A = cumsum( repmat(sign(yd(fnd)),dm,1), 1);
% Here we interpolate points along all the line segments at the
% correct intervals.
fnd1 = find(abs(A)<=abs( repmat(yd(fnd),dm,1) ));
A = A+repmat(yi(fnd),dm,1)-(A>0);
xy = (x(fnd+1)-x(fnd))./(y(fnd+1)-y(fnd));
xi = repmat(x(fnd),dm,1)+(A-repmat(y(fnd),dm,1) ).*repmat(xy,dm,1);
yi = A(fnd1);
xi = xi(fnd1);
% Sorting points of the hatch line ........................
%%%yi0 = min(yi); yi1 = max(yi);
% Sort them in raster order (i.e. by x, then by y)
% Add '2' to make sure we don't have problems going from a max(xi)
% to a min(xi) on the next line (yi incremented by one)
if length(xi)>0,
xi0 = min(xi); xi1 = max(xi);
ci = 2*yi*(xi1-xi0)+xi;
[ci,num] = sort(ci);
xi = xi(num); yi = yi(num);
else
xi=NaN;yi=NaN;
return;
end;
% if this happens an error has occurred somewhere (we have an odd
% # of points), and the "fix" is not correct, but for speckling anyway
% it really doesn't make a difference.
if rem(length(xi),2)==1,
disp('mhatch warning');
xi = [xi; xi(end)];
yi = [yi; yi(end)];
end
% Organize to pairs and separate by NaN's ................
li = length(xi);
xi = reshape(xi,2,li/2);
yi = reshape(yi,2,li/2);
% The speckly part - instead of taking the line we make a point some
% random distance in.
if length(speckle)>1 | speckle(1)~=0,
if length(speckle)>1,
% Now we get the speckle parameter for each line.
% First, carry over the speckle parameter for the segment
% yd=[0 speckle(1:end-1)];
yd=[speckle(1:end)];
A=repmat(yd(fnd),dm,1);
speckle=A(fnd1);
% Now give it the same preconditioning as for xi/yi
speckle=speckle(num);
if rem(length(speckle),2)==1,
speckle = [speckle; speckle(end)];
end
speckle=reshape(speckle,2,li/2);
else
speckle=[speckle;speckle];
end;
% Thin out the points in narrow parts.
% This keeps everything when abs(dxi)>2*speckle, and then makes
% it increasingly sparse for smaller intervals.
oldxi=xi;oldyi=yi;
dxi=diff(xi);
nottoosmall=sum(speckle,1)~=0 & rand(1,li/2)<abs(dxi)./(max(sum(speckle,1),eps));
xi=xi(:,nottoosmall);
yi=yi(:,nottoosmall);
dxi=dxi(nottoosmall);
if size(speckle,2)>1, speckle=speckle(:,nottoosmall); end;
% Now randomly scatter points (if there any left)
li=length(dxi);
if any(li),
xi(1,:)=xi(1,:)+sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(1,:),abs(dxi) );
xi(2,:)=xi(2,:)-sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(2,:),abs(dxi) );
% Remove the 'zero' speckles
if size(speckle,2)>1,
xi=xi(speckle~=0);
yi=yi(speckle~=0);
end;
end;
else
xi = [xi; ones(1,li/2)*nan]; % Separate the line segments
yi = [yi; ones(1,li/2)*nan];
end;
xi = xi(:)'; yi = yi(:)';
% Transform back to the original coordinate system
yi = yi*step;
xy = xi*ca-yi*sa;
yi = xi*sa+yi*ca;
xi = xy/xsc+x0;
yi = yi/ysc+y0;