-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata_loader.py
127 lines (104 loc) · 4.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import time
import copy
import torch
import torchvision
import pandas as pd
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models, datasets
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
class CustomDataset(Dataset):
def __init__(self, image_path, metadata_path, mode, transform, num_val=100):
self.image_path = image_path
self.metadata_path = metadata_path
self.mode = mode
self.transform = transform
raw_lines = open(self.metadata_path, 'r').readlines()
self.lines = raw_lines[3:]
print(self.lines.__len__())
print(self.lines[0])
self.test_filenames = []
self.test_poses = []
self.train_filenames = []
self.train_poses = []
for i, line in enumerate(self.lines):
splits = line.split()
filename = splits[0]
values = splits[1:]
values = list(map(lambda x: float(x.replace(",", "")), values))
filename = os.path.join(self.image_path, filename)
if self.mode == 'train':
# if i > num_val:
self.train_filenames.append(filename)
self.train_poses.append(values)
elif self.mode == 'test':
self.test_filenames.append(filename)
self.test_poses.append(values)
elif self.mode == 'val':
self.test_filenames.append(filename)
self.test_poses.append(values)
if i > num_val:
break
else:
assert 'Unavailable mode'
self.num_train = self.train_filenames.__len__()
self.num_test = self.test_filenames.__len__()
print("Number of Train", self.num_train)
print("Number of Test", self.num_test)
def __getitem__(self, index):
if self.mode == 'train':
image = Image.open(self.train_filenames[index])
pose = self.train_poses[index]
elif self.mode in ['val', 'test']:
image = Image.open(self.test_filenames[index])
pose = self.test_poses[index]
return self.transform(image), torch.Tensor(pose)
def __len__(self):
if self.mode == 'train':
num_data = self.num_train
elif self.mode in ['val', 'test']:
num_data = self.num_test
return num_data
def get_loader(model, image_path, metadata_path, mode, batch_size, is_shuffle=False, num_val=100):
# Predefine image size
if model == 'Googlenet':
img_size = 300
img_crop = 299
elif model == 'Resnet':
img_size = 256
img_crop = 224
if mode == 'train':
transform = transforms.Compose([
transforms.Resize(img_size),
transforms.RandomCrop(img_crop),
transforms.ColorJitter(0.5, 0.5, 0.5, 0.2),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# metadata_path_val = '/mnt/data2/image_based_localization/posenet/KingsCollege/dataset_test.txt'
datasets = {'train': CustomDataset(image_path, metadata_path, 'train', transform, num_val),
'val': CustomDataset(image_path, metadata_path, 'val', transform, num_val)}
# data_loaders = {x: DataLoader(datasets[x], batch_size, is_shuffle, num_workers=batch_size)
# for x in ['train', 'val']}
data_loaders = {'train': DataLoader(datasets['train'], batch_size, is_shuffle, num_workers=4),
'val': DataLoader(datasets['val'], batch_size, is_shuffle, num_workers=4)}
elif mode == 'test':
transform = transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_crop),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
batch_size = 1
is_shuffle = False
dataset = CustomDataset(image_path, metadata_path, 'test', transform)
data_loaders = DataLoader(dataset, batch_size, is_shuffle, num_workers=4)
else:
assert 'Unavailable Mode'
return data_loaders