-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
111 lines (89 loc) · 4.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
def model_parser(model, sum_mode=False, dropout_rate=0.0, bayesian=False):
base_model = None
if model == 'Resnet':
base_model = models.resnet34(pretrained=True)
network = HourglassNet(base_model, sum_mode, dropout_rate, bayesian)
else:
assert 'Unvalid Model'
return network
class HourglassNet(nn.Module):
def __init__(self, base_model, sum_mode=False, dropout_rate=0.0, bayesian=False):
super(HourglassNet, self).__init__()
self.bayesian = bayesian
self.dropout_rate = dropout_rate
self.sum_mode = sum_mode
# Encoding Blocks
self.init_block = nn.Sequential(*list(base_model.children())[:4])
# self.res1_block = nn.Sequential(*list(base_model.layer1.children()))
self.res_block1 = base_model.layer1
self.res_block2 = base_model.layer2
self.res_block3 = base_model.layer3
self.res_block4 = base_model.layer4
# Decoding Blocks
if sum_mode:
self.deconv_block1 = nn.ConvTranspose2d(512, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.deconv_block2 = nn.ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.deconv_block3 = nn.ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.conv_block = nn.Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
else:
self.deconv_block1 = nn.ConvTranspose2d(512, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.deconv_block2 = nn.ConvTranspose2d(512, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.deconv_block3 = nn.ConvTranspose2d(256, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False, output_padding=1)
self.conv_block = nn.Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
# Regressor
self.fc_dim_reduce = nn.Linear(56 * 56 * 32, 1024)
self.fc_trans = nn.Linear(1024, 3)
self.fc_rot = nn.Linear(1024, 4)
# Initialize Weights
init_modules = [self.deconv_block1, self.deconv_block2, self.deconv_block3, self.conv_block,
self.fc_dim_reduce, self.fc_trans, self.fc_rot]
for module in init_modules:
if isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.Linear) or isinstance(module, nn.Conv3d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
# nn.init.normal_(self.fc_last.weight, 0, 0.01)
# nn.init.constant_(self.fc_last.bias, 0)
#
# nn.init.normal_(self.fc_position.weight, 0, 0.5)
# nn.init.constant_(self.fc_position.bias, 0)
#
# nn.init.normal_(self.fc_rotation.weight, 0, 0.01)
# nn.init.constant_(self.fc_rotation.bias, 0)
def forward(self, x):
# Conv
x = self.init_block(x)
x_res1 = self.res_block1(x)
x_res2 = self.res_block2(x_res1)
x_res3 = self.res_block3(x_res2)
x_res4 = self.res_block4(x_res3)
# Deconv
x_deconv1 = self.deconv_block1(x_res4)
if self.sum_mode:
x_deconv1 = x_res3 + x_deconv1
else:
x_deconv1 = torch.cat((x_res3, x_deconv1), dim=1)
x_deconv2 = self.deconv_block2(x_deconv1)
if self.sum_mode:
x_deconv2 = x_res2 + x_deconv2
else:
x_deconv2 = torch.cat((x_res2, x_deconv2), dim=1)
x_deconv3 = self.deconv_block3(x_deconv2)
if self.sum_mode:
x_deconv3 = x_res1 + x_deconv3
else:
x_deconv3 = torch.cat((x_res1, x_deconv3), dim=1)
x_conv = self.conv_block(x_deconv3)
x_linear = x_conv.view(x_conv.size(0), -1)
x_linear = self.fc_dim_reduce(x_linear)
x_linear = F.relu(x_linear)
dropout_on = self.training or self.bayesian
if self.dropout_rate > 0:
x_linear = F.dropout(x_linear, p=self.dropout_rate, training=dropout_on)
trans = self.fc_trans(x_linear)
rot = self.fc_rot(x_linear)
return trans, rot