-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrfrmsprop.py
108 lines (87 loc) · 3.55 KB
/
rfrmsprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.optim as optim
class MyRmsProp(optim.Optimizer):
#root-free RMSProp
def __init__(self, params, lr, alpha, eps=1e-4,
weight_decay=0, momentum=0,
batch_averaged=True,
batch_size=None,
cast_dtype=torch.float32,
model=None,
dummy_init = False,
dummy_scaling = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= momentum:
raise ValueError("Invalid momentum value: {}".format(momentum))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= alpha:
raise ValueError("Invalid alpha value: {}".format(alpha))
print('rf-rmsprop', cast_dtype)
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, weight_decay=weight_decay)
self.dummy_init=dummy_init
if self.dummy_init:
print( 'enable zero init')
self.dummy_scaling=dummy_scaling
if self.dummy_scaling:
print( 'enable default scaling')
self.cast_dtype = cast_dtype
self.batch_averaged = batch_averaged
if batch_averaged:
assert batch_size is not None
self.batch_size = batch_size
super(MyRmsProp, self).__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
factor = 1.0 # since grad is unscaled
if self.dummy_scaling:
factor = 1.0
else:
if self.batch_averaged:
factor *= self.batch_size
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.to(self.cast_dtype)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
if self.dummy_init:
state['square_avg'] = torch.zeros_like(grad)
else:
state['square_avg'] = torch.ones_like(grad)/factor
if group['momentum'] > 0:
state['momentum_buffer'] = torch.zeros_like(grad)
square_avg = state['square_avg']
alpha = group['alpha']
state['step'] += 1
###################################################################
lr_cov = 1.0-alpha
lr0 = group['lr']
square_avg.mul_(1.0-lr_cov).addcmul_(grad, grad, value=lr_cov)
###################################################################
grad.div_( (square_avg*factor + group['eps']) )
if group['weight_decay'] != 0:
grad.add_(p.data, alpha=group['weight_decay'])
if group['momentum'] != 0:
buf = state['momentum_buffer']
buf.mul_(group['momentum']).add_(grad)
else:
buf = grad
p.add_(buf, alpha=-lr0)
return loss