-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
166 lines (139 loc) · 8.33 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
clc
clear
tic
% main function
% 3 cells; uplink transmission;
% semantic-aware networks
% two applications: DeepSC for text transmission and VQA task; single modal task and bimodal task
%% cell parameters
N_cell = 3;
ISD=1000; % the distance between two BSs
radius=ISD/sqrt(3); % cell radius
% the position of each BS
BS_position=cell(N_cell,1);
BS_position{1}=[0,0]; %the position of BS1:(0,0)
BS_position{2}=[ISD,0]; % the position of BS2:(1000,0)
BS_position{3}=[ISD/2,ISD*sqrt(3)/2];
% BS_position{4}=[ISD/2,-ISD*sqrt(3)/2];
% BS_position{5}=[-ISD,0];
% BS_position{6}=[-ISD/2,ISD*sqrt(3)/2];
% BS_position{7}=[-ISD/2,-ISD*sqrt(3)/2];
%% appilication parameters
% single-modal task
H_S=4; % semantic entropy of DeepSC
K_S=1:1:20; % possible values of the number of semantic symbols for DeepSC
load('DeepSC_table'); % row: number of symbols(1:1:20); column:snr(-10:1:20)
% bimodal task
H_Bi_text=2; % semantic entropy of text user of VQA
H_Bi_image=4*197; % semantic entropy of image user of VQA
K_Bi_text=[4,8,12,16,20]/2; % possible values of number of semantic symbols for text user in VQA; unit: symbols/word
K_Bi_image=[4,8,16,24,32]/2*197; % possible values of number of semantic symbols for image user in VQA; unit: symbols/image
snr_range=-10:5:20; % the range of snr for each bimodal user
ind=fullfact([length(snr_range),length(snr_range)]);
SINR_Bi=[snr_range(ind(:,1));snr_range(ind(:,2))]; % the snr combinations
load('VQA_table'); %VQA_table=cell(length(K_Bi_image),length(K_Bi_text)); in each cell, row:snr of text user; column:snr of image user
G_th=0.5; %the minimum score of phi and si for all users
%% channel parameters
N_channels=6; % the number of channels
shadow_factor=6; % shadowing factor(dB)
bandwidth=180000; %channel bandwidth is 180kHz
Nr=2;% the number of receive antennas equiped at each BS
Nt=1; % the number of transmit antennas equiped at each user
P_range_db=[-10,-5,0,5,10,15,20]; % the transmit power (dBm)
P_range=10.^((P_range_db)/10); % the transmit power(mW)
P_noise=180000 * 10^(-17.4); % noise power with 180kHz bandwidth (mW)(PSD:-174dBm/Hz)
I_th=0; % interference power threshold£¨not used in the work£©
%% monte-carlo simulation
% the method_index of the schemes:
% 1. exhausted searching; (not used in the work)
% 2. random matching--randomly match the channel and power for each user
% 3. matching; randomly initialize the channels and power for each user (not used in the paper)
% 4. fix power(P_max) + PropoedMatching;(not used in the paper)
% 5. initial power is set as the smallest value to ensure higher energy efficiency; channel: random matching (Proposed algorithm)
% 6. single cell optimization; comparison with the scheme without considering inter-cell interference
% 7. the scheme where sum S-SR is optimized
% 2,5,6,7
method_index=5; % the index of simulated method
% channels_range=[5]; % number of channels
channels_range=1:1:7; % number of channels
% QoE_channel=zeros(1,length(channels_range)); % save the sum overall QoE result of x-axis
% P_channel=zeros(1,length(channels_range));
% up_channel=zeros(1,length(channels_range));
% G_th_range=0.3:0.1:0.9;
% QoE_channel=zeros(1,length(G_th_range));
N_index=1:1:3; % the setting for different numbers of users
Monte=1;
QoE_result_channel=[];
for i=1:1:Monte
QoE_result=[]; % save the overall QoE in each time
P_result=[];
up_result=[]; % save the upper bound
for N_channels=channels_range
% for n_index=N_index % different numbers of users
% number of users in each cell
N=zeros(N_cell,3); % first column: N_S; the second column: N_Bi,the third column: N_D=N_S+N_Bi
% switch n_index % different n_index means different setting
% case 1
% N_S_sum=6; % the sum of single modal users in N_cell cells
% N_Bi_sum=6; % the sum of bimodal user pairs in N_cell cells
% case 2
% N_S_sum=6; % the sum of single modal users in N_cell cells
% N_Bi_sum=9; % the sum of bimodal user pairs in N_cell cells
% case 3
% N_S_sum=9; % the sum of single modal users in N_cell cells
% N_Bi_sum=9; % the sum of bimodal user pairs in N_cell cells
% end
N_S_sum=6; % default setting for the number of single-modal users; the sum of single modal users in N_cell cells
N_Bi_sum=6; % default setting for the number of bimodal user groups; the sum of bimodal user pairs in N_cell cells
cell_S_index=randi(N_cell,1,N_S_sum); % the number of single-modal users in each cell
cell_Bi_index=randi(N_cell,1,N_Bi_sum);% the number of bimodal user groups in each cell
% the users in every cell; meanwhile obtain the upper bound
up_cell=0;
for n_cell=1:1:N_cell % for each cell
N_S=sum(cell_S_index==n_cell); % the number of single-modal users in n_cell
N_Bi=sum(cell_Bi_index==n_cell)*2; % the number of bimodal users in n_cell
N(n_cell,:)=[N_S,N_Bi,N_Bi+N_S]; % the users in n_cell
if N_Bi+N_S>N_channels % if the number of users is larger than the number of channels, there are totally at most N_channels users can be served.
up_cell=up_cell+N_channels;
else % else there are totally N_Bi+N_S users can be served.
up_cell=up_cell+N_Bi+N_S;
end
end
up_result=[up_result,up_cell]; % save the number of served users in this time
switch method_index
case 1 % exhausted (not used in the paper)
[QoE]=Exhausted(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 2 % random matching
[QoE]=Random(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 3 % matching (not used in the paper)
[QoE,state_u]=Matching(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 4 % FixP+matching (input P_range as only a value) (not used in the paper)
% P_range=10.^(20/10);
% P_range=10.^(0/10);
[QoE,state_u,P]=MinPowerMatching(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 5 % ProposedAlgorithm; initial power is set as the minimum value to minimize the energy consumption
[QoE,state_u,P]=MinPowerMatching(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 6 % single cell optimization; comparison with the scheme without considering inter-cell interference
[QoE,state_u]=SCMatching(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
case 7 % the scheme where sum S-SR is optimized
[QoE,state_u]=MaxSRMatching(BS_position,SINR_single,DeepSC_table,SINR_Bi,VQA_table,N,radius,N_cell,N_channels,shadow_factor,Nr,P_range,P_noise,I_th,H_S,K_S,bandwidth,H_Bi_text,H_Bi_image,K_Bi_text,K_Bi_image,G_th);
end
QoE_result=[QoE_result, QoE]; % save the results of QoE in this time
% P_result=[P_result, P];
end
QoE_result_channel=[QoE_result_channel; QoE_result]; % save the QoE results when the number of channels is N_channels
% up_channel=up_channel+up_result;
% P_channel=P_channel+P_result;
end
QoE_channel=sum(QoE_result_channel);
QoE_channel=QoE_channel/Monte;
figure;
plot(channels_range, QoE_channel);
% plot(N_index, QoE_channel);
% up_channel=up_channel/Monte;
% figure;
% plot(channels_range, up_channel);
% P_channel=P_channel/Monte;
% figure;
% plot(channels_range, P_channel);
toc