forked from Farama-Foundation/Minigrid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexpert.py
191 lines (143 loc) · 5.96 KB
/
expert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
import sys
import numpy as np
import gym
import time
from optparse import OptionParser
import ipdb
import random
import matplotlib.pyplot as plt
class ExpertClass():
def __init__(self,env,tau_num,tau_len):
self.HEIRARCHICAL = True;
self.PLOT_V = True
self.EGREEDY = False
# states
self.gridSize = env.gridSize
if(self.HEIRARCHICAL):
self.num_states = self.gridSize*self.gridSize*2
else:
self.num_states = self.gridSize*self.gridSize
# meta-parameters
self.epsilon = 1.0; # e-greedy
self.temp = 1.0; # soft-max temp
self.alpha = 0.01; # learning rate
self.gamma = 0.7; # discount factor
self.carried_flag = None;
self.q = np.zeros((self.num_states, env.action_space.n));
if(self.PLOT_V):
self.init_value_plot()
## initialize trajectory details ##
self.tau_num = tau_num;
self.tau_len = tau_len;
self.TAU_S = np.zeros((self.tau_len, self.tau_num))-1 # matrix of states with all trajectories
self.TAU_A = np.zeros((self.tau_len, self.tau_num))-1 # matrix of actions with all trajectories
self.tau_s = np.zeros((self.tau_len))-1
self.tau_a = np.zeros((self.tau_len))-1
self.tau_time=0;
self.tau_episode=0
def reset(self,env,RANDOM_RESET):
#print("done!"+str(env.stepCount)+" steps")
env.reset(RANDOM_RESET)
self.tau_s = np.zeros((self.tau_len))-1
self.tau_a = np.zeros((self.tau_len))-1
self.tau_time = 0
###################
##### core RL #####
###################
def get_action(self, env):
if(self.HEIRARCHICAL):
s = env.agentPos[0] + self.gridSize*env.agentPos[1] + int((env.carrying!=None)*self.num_states/2);
else:
s = env.agentPos[0] + self.gridSize*env.agentPos[1];
if(self.EGREEDY):
if random.uniform(0, 1) <= self.epsilon:
return env.action_space.sample()
else:
return np.argmax(self.q[s,:])
else:
pi = np.exp(10.0*(self.q[s,:]-np.max(self.q)))
pi = pi/np.sum(pi)
return np.random.choice(range(env.action_space.n), p=pi)
def update_q(self,s,a,r,s_prime):
self.q[s,a] = self.q[s,a] + self.alpha*(r + self.gamma*np.max(self.q[s_prime,:]) - self.q[s,a])
########################
##### Trajectories #####
########################
def record_tau(self,state,action):
if(self.tau_time>self.tau_len):
print("Time exceeded for storing trajectories")
if(self.HEIRARCHICAL):
self.tau_s[self.tau_time] = int(state%(self.gridSize*self.gridSize));
else:
self.tau_s[self.tau_time] = int(state);
self.tau_a[self.tau_time] = int(action);
self.tau_time += 1
def store_tau(self,episode):
self.TAU_S[:,self.tau_episode] = self.tau_s
self.TAU_A[:,self.tau_episode] = self.tau_a
print("\ntau(",self.tau_episode,"): ",sep='',end='')
for s in self.tau_s:
print(int(s),',',sep='',end='')
self.tau_episode += 1
def get_tau(self):
return (self.TAU_S,self.TAU_A)
####################
##### plotters #####
####################
def init_value_plot(self):
fig = plt.figure(figsize=(5,10))
# get initial plot config
self.ax1 = fig.add_subplot(111);
self.ax1.set_autoscale_on(True);
# get value from q-function
q_max = np.max(self.q,1)
v = np.reshape(q_max,(self.gridSize*2,self.gridSize))
# plot value function
self.v1_plotter = plt.imshow(v,interpolation='none', cmap='viridis', vmin=v.min(), vmax=v.max());
plt.xticks([]); plt.yticks([]); plt.grid(False); plt.colorbar();
plt.title('true value function'); plt.ion(); plt.show();
def see_value_plot(self):
q_max = np.max(self.q,1)
v1 = np.reshape(q_max,(self.gridSize*2,self.gridSize))
self.v1_plotter.set_data(v1)
plt.clim(np.min(v1),np.max(v1))
plt.draw(); plt.show()
plt.pause(0.0001)
###################
##### update ######
###################
# returns (episode done?, main goal reached?)
def update(self,env,episode,STORE):
if(STORE):
self.temp = 10.0;
else:
self.temp = 1.0;
if(self.HEIRARCHICAL):
s = env.agentPos[0] + self.gridSize*env.agentPos[1] + int((env.carrying!=None)*self.num_states/2);
else:
s = env.agentPos[0] + self.gridSize*env.agentPos[1]
a = self.get_action(env)
if (env.agentPos[0]<0 and env.agentPos[0]>=env.gridSize and env.agentPos[1]<0 and env.agentPos[1]>env.gridSize):
print("What's wrong with state values?!")
obs, r, done, info = env.step(a)
main_task_done = r
# sub-goal
if(self.HEIRARCHICAL):
if(env.carrying!=None and self.carried_flag==None): #if reached sub-goal
r = 1 # sub-goal reached
self.carried_flag = env.carrying
if(self.HEIRARCHICAL):
s_prime = env.agentPos[0] + self.gridSize*env.agentPos[1] + int((env.carrying!=None)*self.num_states/2);
else:
s_prime = env.agentPos[0] + self.gridSize*env.agentPos[1];
self.update_q(s,a,r,s_prime)
if done and self.PLOT_V and episode%100==0:
self.see_value_plot()
if(STORE):
self.record_tau(s,a);
if(main_task_done):
self.record_tau(s_prime,env.action_space.sample());
self.store_tau(episode);
return done,True
return done,False