diff --git a/README.md b/README.md index 8e4db17..ac5d544 100644 --- a/README.md +++ b/README.md @@ -16,103 +16,4 @@ --- -## Environmental Setups -Please follow the [3D-GS](https://github.com/graphdeco-inria/gaussian-splatting) to install the relative packages. -```bash -git clone https://github.com/hustvl/4DGaussians -cd 4DGaussians -git submodule update --init --recursive -conda create -n Gaussians4D python=3.7 -conda activate Gaussians4D - -pip install -r requirements.txt -pip install -e submodules/depth-diff-gaussian-rasterization -pip install -e submodules/simple-knn -``` -In our environment, we use pytorch=1.13.1+cu116. -## Data Preparation -**For synthetic scenes:** -The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0). - -**For real dynamic scenes:** -The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows. -``` -├── data -│ | dnerf -│ ├── mutant -│ ├── standup -│ ├── ... -│ | hypernerf -│ ├── interp -│ ├── misc -│ ├── virg -│ | dynerf -│ ├── cook_spinach -│ ├── cam00 -│ ├── images -│ ├── 0000.png -│ ├── 0001.png -│ ├── 0002.png -│ ├── ... -│ ├── cam01 -│ ├── images -│ ├── 0000.png -│ ├── 0001.png -│ ├── ... -│ ├── cut_roasted_beef -| ├── ... -``` - - -## Training -For training synthetic scenes such as `bouncingballs`, run -``` -python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py -``` -You can customize your training config through the config files. -## Rendering -Run the following script to render the images. - -``` -python render.py --model_path "output/dnerf/bouncingballs/" --skip_train --configs arguments/dnerf/bouncingballs.py & -``` - - -## Evaluation -You can just run the following script to evaluate the model. - -``` -python metrics.py --model_path "output/dnerf/bouncingballs/" -``` -## Scripts - -There are some helpful scripts in `scripts/`, please feel free to use them. - ---- -## Contributions - -**This project is still under development. Please feel free to raise issues or submit pull requests to contribute to our codebase.** - ---- -Some source code of ours is borrowed from [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [k-planes](https://github.com/Giodiro/kplanes_nerfstudio),[HexPlane](https://github.com/Caoang327/HexPlane), [TiNeuVox](https://github.com/hustvl/TiNeuVox). We sincerely appreciate the excellent works of these authors. - -## Acknowledgement - -We would like to express our sincere gratitude to [@zhouzhenghong-gt](https://github.com/zhouzhenghong-gt/) for his revisions to our code and discussions on the content of our paper. -## Citation -Some insights about neural voxel grids and dynamic scenes reconstruction originate from [TiNeuVox](https://github.com/hustvl/TiNeuVox). If you find this repository/work helpful in your research, welcome to cite these papers and give a ⭐. -``` -@article{wu20234dgaussians, - title={4D Gaussian Splatting for Real-Time Dynamic Scene Rendering}, - author={Wu, Guanjun and Yi, Taoran and Fang, Jiemin and Xie, Lingxi and Zhang, Xiaopeng and Wei Wei and Liu, Wenyu and Tian, Qi and Wang Xinggang}, - journal={arXiv preprint arXiv:2310.08528}, - year={2023} -} - -@inproceedings{TiNeuVox, - author = {Fang, Jiemin and Yi, Taoran and Wang, Xinggang and Xie, Lingxi and Zhang, Xiaopeng and Liu, Wenyu and Nie\ss{}ner, Matthias and Tian, Qi}, - title = {Fast Dynamic Radiance Fields with Time-Aware Neural Voxels}, - year = {2022}, - booktitle = {SIGGRAPH Asia 2022 Conference Papers} -} -``` +## This repo has been transferred to [Here](https://github.com/CUHK-AIM-Group/EndoGaussian).