You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
user@machine:/path_to/BRECQ# python main_imagenet.py --data_path /path_to/IMAGENET_2012/ --arch resnet18 --n_bits_w 2 --channel_wise --n_bits_a 4 --act_quant --test_before_calibration
You are using fake SyncBatchNorm2d who is actually the official BatchNorm2d
==> Using Pytorch Dataset
Downloading: "https://github.com/yhhhli/BRECQ/releases/download/v1.0/resnet18_imagenet.pth.tar" to /root/.cache/torch/hub/checkpoints/resnet18_imagenet.pth.tar
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 44.6M/44.6M [00:27<00:00, 1.70MB/s]
Traceback (most recent call last):
File "main_imagenet.py", line 178, in
cnn.cuda()
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in cuda
return self._apply(lambda t: t.cuda(device))
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 570, in _apply
module._apply(fn)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 593, in _apply
param_applied = fn(param)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in
return self._apply(lambda t: t.cuda(device))
RuntimeError: CUDA error: out of memory
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
The text was updated successfully, but these errors were encountered:
user@machine:/path_to/BRECQ# python main_imagenet.py --data_path /path_to/IMAGENET_2012/ --arch resnet18 --n_bits_w 2 --channel_wise --n_bits_a 4 --act_quant --test_before_calibration
You are using fake SyncBatchNorm2d who is actually the official BatchNorm2d
==> Using Pytorch Dataset
Downloading: "https://github.com/yhhhli/BRECQ/releases/download/v1.0/resnet18_imagenet.pth.tar" to /root/.cache/torch/hub/checkpoints/resnet18_imagenet.pth.tar
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 44.6M/44.6M [00:27<00:00, 1.70MB/s]
Traceback (most recent call last):
File "main_imagenet.py", line 178, in
cnn.cuda()
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in cuda
return self._apply(lambda t: t.cuda(device))
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 570, in _apply
module._apply(fn)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 593, in _apply
param_applied = fn(param)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in
return self._apply(lambda t: t.cuda(device))
RuntimeError: CUDA error: out of memory
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
The text was updated successfully, but these errors were encountered: