Skip to content

Latest commit

 

History

History
32 lines (23 loc) · 2 KB

README.md

File metadata and controls

32 lines (23 loc) · 2 KB

Shufflenet v2: Practical guidelines for efficient cnn architecture design

Introduction

[BACKBONE]

@inproceedings{ma2018shufflenet,
  title={Shufflenet v2: Practical guidelines for efficient cnn architecture design},
  author={Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={116--131},
  year={2018}
}

Results and models

2d Human Pose Estimation

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_shufflenetv2 256x192 0.599 0.854 0.663 0.664 0.899 ckpt log
pose_shufflenetv2 384x288 0.636 0.865 0.705 0.697 0.909 ckpt log

Results on MPII val set

Arch Input Size Mean Mean@0.1 ckpt log
pose_shufflenetv2 256x256 0.828 0.205 ckpt log