-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfmusim.py
401 lines (331 loc) · 13.5 KB
/
fmusim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
This Code organizes the FMU Interfaces "FMUInterface.py" and "FMIDescription.py"
in a python class. Its the main class that shoudl be used by 3rd party applications.
'''
#
#
# filename: contsim.py
# author: - Thomas Meschede
#
#
# Test simulation of FMI files using the provided FMI Interface from pysimulator from DLR
#
#
#
# modified:
# - 2012 11 22 - Thomas Meschede
import numpy as np
import FMUInterface
from FMUInterface import fmiTrue, fmiFalse
from operator import itemgetter
import time
import re
import types
class fmu(FMUInterface.FMUInterface):
def __init__(self, file, logging = True):
super(fmu, self).__init__(file,loggingOn = logging) #init fmu interface
self.changedStartValue={}
# def getStateNames(self):
# ''' Returns a list of Strings: the names of all states in the model.
# '''
# references = self.fmiGetStateValueReferences()
# allVars = list(self.description.scalarVariables.items())
# referenceListSorted = [(index, var[1].valueReference) for index, var in enumerate(allVars)]
# referenceListSorted.sort(key=itemgetter(1))
# referenceList = [r[1] for r in referenceListSorted]
#
# names = []
# for ref in references:
# if ref == -1:
# # No reference available -> name is hidden
# names.append('')
# else:
# k = referenceList.count(ref)
# if k > 0:
# index = -1
# i = 0
# while i < k:
# i += 1
# index = referenceList.index(ref, index + 1)
# if allVars[referenceListSorted[index][0]][1].alias is None:
# name = allVars[referenceListSorted[index][0]][0]
# names.append(name)
# break
# else:
# # Reference not found. Should not occur.
# names.append('')
# return names
def getInputVariables(self):
vars = [(name, var.type.start) for (name, var) in self.description.scalarVariables.items() if var.causality == 'input']
return vars
def getValue(self, name):
''' Returns the values of the variables given in name;
name is either a String or a list of Strings.
'''
if type(name) == list:
n = len(name)
nameList = True
names = name
else:
n = 1
nameList = False
names = [name]
iReal = []
iInteger = []
iBoolean = []
iString = []
refReal = []
refInteger = []
refBoolean = []
refString = []
for i, x in enumerate(names):
dataType = self.description.scalarVariables[x].type.type
if dataType == 'Real':
refReal.append(self.description.scalarVariables[x].valueReference)
iReal.append(i)
elif dataType == 'Integer':
refInteger.append(self.description.scalarVariables[x].valueReference)
iInteger.append(i)
elif dataType == 'Boolean':
refBoolean.append(self.description.scalarVariables[x].valueReference)
iBoolean.append(i)
elif dataType == 'String':
refString.append(self.description.scalarVariables[x].valueReference)
iString.append(i)
#TODO: hier werden Werte für bestimmte Variablen abgerufen.
retValue = list(range(n))
k = len(refReal)
if k > 0:
ref = FMUInterface.createfmiReferenceVector(k)
for i in range(k):
ref[i] = refReal[i]
values = self.fmiGetReal(ref)
for i in range(k):
retValue[iReal[i]] = values[i]
k = len(refInteger)
if k > 0:
ref = FMUInterface.createfmiReferenceVector(k)
for i in range(k):
ref[i] = refInteger[i]
values = self.fmiGetInteger(ref)
for i in range(k):
retValue[iInteger[i]] = values[i]
k = len(refBoolean)
if k > 0:
ref = FMUInterface.createfmiReferenceVector(k)
for i in range(k):
ref[i] = refBoolean[i]
values = self.fmiGetBoolean(ref)
for i in range(k):
retValue[iBoolean[i]] = values[i]
k = len(refString)
if k > 0:
ref = FMUInterface.createfmiReferenceVector(k)
for i in range(k):
ref[i] = refString[i]
values = self.fmiGetString(ref)
for i in range(k):
retValue[iString[i]] = values[i]
if nameList:
return retValue
else:
return retValue[0]
def setValue(self, valueName, valueValue):
''' set the variable valueName to valueValue
@param valueName: name of variable to be set
@type valueName: string
@param valueValue: new value
@type valueValue: any type castable to the type of the variable valueName
'''
ScalarVariableReferenceVector = FMUInterface.createfmiReferenceVector(1)
ScalarVariableReferenceVector[0] = self.description.scalarVariables[valueName].valueReference
if self.description.scalarVariables[valueName].type.type == 'Real':
ScalarVariableValueVector = FMUInterface.createfmiRealVector(1)
ScalarVariableValueVector[0] = float(valueValue)
self.fmiSetReal(ScalarVariableReferenceVector, ScalarVariableValueVector)
elif self.description.scalarVariables[valueName].type.type in ['Integer', 'Enumeration']:
ScalarVariableValueVector = FMUInterface.createfmiIntegerVector(1)
ScalarVariableValueVector[0] = int(valueValue)
self.fmiSetInteger(ScalarVariableReferenceVector, ScalarVariableValueVector)
elif self.description.scalarVariables[valueName].type.type == 'Boolean':
ScalarVariableValueVector = FMUInterface.createfmiBooleanVector(1)
if valueValue == "true":
ScalarVariableValueVector[0] = fmiTrue
else:
ScalarVariableValueVector[0] = fmiFalse
self.fmiSetBoolean(ScalarVariableReferenceVector, ScalarVariableValueVector)
elif self.description.scalarVariables[valueName].type.type == 'String':
ScalarVariableValueVector = FMUInterface.createfmiStringVector(1)
ScalarVariableValueVector[0] = str(valueValue)
self.fmiSetString(ScalarVariableReferenceVector, ScalarVariableValueVector)
def printvarprops(self):
''' Returns a list of Strings: the names of all output variables in the model.
'''
names = {}
for key,var in self.description.scalarVariables.items():
#if var.causality=='output':
print("{:<40}{v.valueReference:<30}{v.alias:<20}{v.variability}".format(key,v=var))#key, var.valueReference, var.alias, var.variability, var.description, var.causality,var.directDependency, var.type)
#names[var.valueReference]=key
return names
def getContinuousVariables(self):
if self._mode is 'me':
return self.getVariables('continuous')
elif self._mode is 'cs':
return self.getVariables('continuous')
def getOutputNames(self):
''' Returns a list of Strings: the names of all output variables in the model.
'''
names = {}
for key,var in self.description.scalarVariables.items():
if var.causality=='output':
#print(key, var.valueReference, var.alias, var.variability, var.description, var.causality,var.directDependency, var.type)
names[var.valueReference]=key
return names
def getStateNames(self):
''' Returns a list of Strings: the names of all states in the model.
'''
references = self.fmiGetStateValueReferences()
names = {}
for key,var in self.description.scalarVariables.items():
if var.valueReference in references and var.variability=='continuous':
#print(key, var.valueReference, var.alias, var.variability, var.description, var.causality,var.directDependency, var.type)
names[var.valueReference]=key
return names
def getVariables(self, variability = 'all', causality = 'all'):
'''
variability: return variables with variability property
Returns:
a list of Strings: the namesof the variables with a certain property
'''
names = {}
for key,var in self.description.scalarVariables.items():
if variability == 'all' or var.variability==variability:
#print(key, var.valueReference, var.alias, var.variability, var.description, var.causality,var.directDependency, var.type)
names[var.valueReference]=key
return names
def searchvars(self,string):
r = re.compile(string) #search for variables to plot
vmatch = np.vectorize(lambda x:bool(r.match(x)))
#A = np.array(list('abc abc abc'))
#sel = vmatch(A)
vrs = np.array(self.getVariables())[:,0]
#myfmu.getVariables()
return vrs[vmatch(vrs)]
def initialize(self, t, errorTolerance=1e-9):
''' Initializes the model at time = t with
changed start values given by the dictionary
self.changedStartValue.
The function returns a status flag and the next time event.
'''
# Terminate last simulation in model
#self.interface.fmiTerminate()
#print("Set start time")
#self.interface.fmiSetTime(t)
# Set start values
#self._setDefaultStartValues()
for name in list(self.changedStartValue.keys()):
self.setValue(name, self.changedStartValue[name])
# Initialize model
eventInfo, status = self.fmiInitialize(fmiTrue, errorTolerance)
x0 = self.fmiGetContinuousStates()
return x0, status, eventInfo
def f(self,t,y):
""" return a function which can be used for external solver
the example (just small differences, no jacobian) from the scipy intergrator:
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode
The integration:
f = myfmu.f #loaded FMU
t0 = 0.0
y0 = myfmu.initialize(0.0)
r = ode(f).set_integrator('zvode', method='bdf')
r.set_initial_value(y0, t0)
t1 = 10
dt = 1
while r.successful() and r.t < t1:
r.integrate(r.t+dt)
print("%g %g" % (r.t, r.y))
"""
self.fmiSetTime(t)
self.fmiSetContinuousStates(y)
ny = self.fmiGetDerivatives()
return ny
def single_timestep(self, dt = 0.01):
pass
def simulate(self,dt=0.01, t_start=0.0, t_end=1.0, varnames=[], inputfs = {}):
if self._mode == 'me':
print("run me-simulation")
return self.mesimulate(dt, t_start, t_end, varnames, inputfs = inputfs)
elif self._mode == 'cs':
print("run co-simulation")
return self.cosimulate(dt, t_start, t_end, varnames, inputfs = inputfs)
def mesimulate(self,dt=0.01, t_start=0.0, t_end=1.0, varnames=[], inputfs = []):
def RK4(y,t,h,f):
h05 = h * .5
t05 = t + h05
k1=f(t,y);
k2=f(t05,y+h05*k1);
k3=f(t05,y+h05*k2);
k4=f(t+h,y+h*k3);
yn=y+h/6.0*(k1+2*(k2+k3)+k4)
return yn
self.fmiSetTime(0.0)
x,status,eventInfo = self.initialize(0.0)
res = [[0.0]+[self.getValue(varname) for varname in varnames]]
#integration loop
for t in np.arange(t_start,t_end + dt,dt):
#x = x + dt * self.f(t,x) #explicit euler
x = RK4(x,t,dt,self.f) #explicit Runge-Kutta 4 (RK4)
self.fmiCompletedIntegratorStep()
#save results in array
#print(t,x,dx)
step=[[t+dt]+[self.getValue(varname) for varname in varnames]]
if np.nan in step:
print(step)
break
#time.sleep(dt)
res+=step
self.fmiTerminate()
return np.array(res)
def cosimulate(self, dt=0.01, t_start = 0.0, t_end = 1.0, varnames=[], inputfs = {}):
tc = t_start #current master time
self.fmiInitializeSlave(t_start, True, t_end)
res=[]
while tc < t_end:
for name,func in inputfs.items():
self.setValue(name, func(tc))
step=[[tc]+[self.getValue(varname) for varname in varnames]]
res+=step
#from the documentation:
# fmiStatus fmiDoStep( fmiComponent c, fmiReal currentCommunicationPoint,fmiReal communicationStepSize, fmiBoolean newStep);
info = self.fmiDoStep(tc, dt, True) #"newstep = True" because master accepts last simulation step
if info != 0:
print(info)
if info == 3:
print("Detected infinite loop in calculation")
break
tc+=dt
self.fmiTerminateSlave()
return np.array(res)
##myfmu = fmu("./Modelica_Mechanics_MultiBody_Examples_Elementary_DoublePendulum.fmu")
##myfmu = fmu("./Modelica_Mechanics_MultiBody_Examples_Elementary_Pendulum.fmu")
##myfmu = fmu("./FMU/Batteriebaustein.fmu")
##myfmu = fmu("./Modelica_Mechanics_Rotational_Examples_First.fmu")
#myfmu = fmu("./efunc.fmu")
#myfmu = fmu("satcomponents_blocks_noise_sampled.fmu", logging = False)
#myfmu = fmu("rosmo_ExternalLibraries.fmu", logging = True)
##myfmu.printvarprops()
##print(myfmu.getOutputNames())
#names=list(myfmu.getContinuousVariables().values())
##names=myfmu.getStateNames()
#simulation with generic solvers
#t_end = 10.0
#res = myfmu.simulate(dt=0.01, t_end=t_end)
#import matplotlib.pyplot as plt
#def plot():
#for i,vals in enumerate(res[:,1:].T):
#plt.plot(res[:,0],vals,label=names[i])
#plt.legend()
#plt.show()
#plot()