-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvalidate.c
711 lines (644 loc) · 41.2 KB
/
validate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/********************************************************************************************
* SIDH: an efficient supersingular isogeny-based cryptography library for Diffie-Hellman key
* exchange providing 128 bits of quantum security and 192 bits of classical security.
*
* Copyright (c) Microsoft Corporation. All rights reserved.
*
*
* Abstract: functions for validation of public keys
*
* SECURITY NOTE: these functions run in variable time because it is assumed that they are
* used over public data.
*
*********************************************************************************************/
#include "SIDH_internal.h"
static bool is_equal_fp(felm_t a, felm_t b)
{ // Return true if a = b in GF(p751). Otherwise, return false
unsigned int i;
for (i = 0; i < NWORDS_FIELD; i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
static bool is_equal_fp2(f2elm_t a, f2elm_t b)
{ // Return true if a = b in GF(p751^2). Otherwise, return false
return (is_equal_fp(a[0], b[0]) && is_equal_fp(a[1], b[1]));
}
CRYPTO_STATUS random_fp2(f2elm_t f2value, PCurveIsogenyStruct pCurveIsogeny)
{ // Output random value in GF(p751). It makes requests of random values to the "random_bytes" function.
// If successful, the output is given in "f2value".
// The "random_bytes" function, which is passed through the curve isogeny structure PCurveIsogeny, should be set up in advance using SIDH_curve_initialize().
// The caller is responsible of providing the "random_bytes" function passing random values as octets.
unsigned int ntry = 0, nbytes;
felm_t t1, p751;
unsigned char mask;
CRYPTO_STATUS Status = CRYPTO_ERROR_UNKNOWN;
clear_words((void*)f2value, 2*NWORDS_FIELD);
fpcopy751(pCurveIsogeny->prime, p751);
nbytes = (pCurveIsogeny->pbits+7)/8; // Number of random bytes to be requested
mask = (unsigned char)(8*nbytes - pCurveIsogeny->pbits);
mask = ((unsigned char)-1 >> mask); // Value for masking last random byte
do {
ntry++;
if (ntry > 100) { // Max. 100 iterations to obtain random value in [0, p751-1]
return CRYPTO_ERROR_TOO_MANY_ITERATIONS;
}
Status = (pCurveIsogeny->RandomBytesFunction)(nbytes, (unsigned char*)&f2value[0]);
if (Status != CRYPTO_SUCCESS) {
return Status;
}
((unsigned char*)&f2value[0])[nbytes-1] &= mask; // Masking last byte
} while (mp_sub(p751, f2value[0], t1, NWORDS_FIELD) == 1);
ntry = 0;
do {
ntry++;
if (ntry > 100) { // Max. 100 iterations to obtain random value in [0, p751-1]
return CRYPTO_ERROR_TOO_MANY_ITERATIONS;
}
Status = (pCurveIsogeny->RandomBytesFunction)(nbytes, (unsigned char*)&f2value[1]);
if (Status != CRYPTO_SUCCESS) {
return Status;
}
((unsigned char*)&f2value[1])[nbytes-1] &= mask; // Masking last byte
} while (mp_sub(p751, f2value[1], t1, NWORDS_FIELD) == 1);
// Cleanup
clear_words((void*)t1, NWORDS_FIELD);
return CRYPTO_SUCCESS;
}
static bool test_curve(f2elm_t A, f2elm_t rvalue, PCurveIsogenyStruct CurveIsogeny)
{
f2elm_t t0, t1, C, one = {0}, zero = {0};
point_proj_t rP, P1;
bool valid_curve;
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, one[0]);
// Test j invariant in Fp2\Fp
fp2sqr751_mont(A, t0); // t0 = a^2
fp2sub751(t0, one, t0);
fp2sub751(t0, one, t0);
fp2sub751(t0, one, t0); // t0 = t0-3
fp2sqr751_mont(t0, t1); // t1 = t0^2
fp2mul751_mont(t0, t1, t1); // t1 = t1*t0
fp2sub751(t0, one, t0); // t0 = t0-1
fpmul751_mont(t1[0], t0[1], t1[0]);
fpmul751_mont(t1[1], t0[0], t1[1]);
valid_curve = !is_equal_fp(t1[0], t1[1]);
// Test supersingular
fp2copy751(rvalue, rP->X);
fp2copy751(one, rP->Z);
fp2copy751(one, C);
xDBLe(rP, rP, A, C, 1);
xDBLe(rP, P1, A, C, 371);
xTPLe(P1, P1, A, C, 239);
fp2mul751_mont(rP->X, P1->Z, rP->X); // X = X*Z1
fp2mul751_mont(rP->Z, P1->X, rP->Z); // Z = Z*X1
fp2sub751(rP->X, rP->Z, rP->X); // X = X-Z
fp2mul751_mont(rP->X, P1->Z, rP->X); // X = X*Z1
return (valid_curve && is_equal_fp2(rP->X, zero));
}
static void cube_indeterminant(f2elm_t a, f2elm_t b, f2elm_t sq)
{ // Computes a*y+b <-- (a*y+b)^3 where y^2=sq
f2elm_t t0, t1, t2, t3;
fp2copy751(a, t0);
fp2sqr751_mont(b, t1);
fp2sqr751_mont(t0, t2);
fp2mul751_mont(sq, t2, t2);
fp2add751(t1, t2, t3);
fp2add751(t1, t3, a);
fp2add751(t1, a, a);
fp2mul751_mont(t0, a, a);
fp2add751(t2, t3, t1);
fp2add751(t2, t1, t1);
fp2mul751_mont(b, t1, b);
}
static void line_indeterminant_TPL(f2elm_t a, f2elm_t b, f2elm_t c, f2elm_t d, f2elm_t sq)
{ // Computes a*y+b <-- (a*y+b)*(c*y+d) where y^2=sq
f2elm_t t0, t1;
fp2mul751_mont(a, c, t0);
fp2mul751_mont(a, d, a);
fp2mul751_mont(b, c, t1);
fp2add751(a, t1, a);
fp2mul751_mont(b, d, t1);
fp2mul751_mont(t0, sq, b);
fp2add751(b, t1, b);
}
static void TPLline(point_proj_t P, point_proj_t Q, publickey_t PK, point_proj_t UP, point_proj_t UQ, f2elm_t alpha_numer, f2elm_t beta_numer, f2elm_t alpha_denom, f2elm_t beta_denom) /// x,z,X,Z,xP,xQ,A
{
f2elm_t x, z, X, Z;
f2elm_t t0, t1, t2, t3, t4, t5, t6, l0P, l1P, l2P, l0Q, l1Q, l2Q;
fp2copy751(P->X, x);
fp2copy751(P->Z, z);
fp2copy751(Q->X, X);
fp2copy751(Q->Z, Z);
fp2sqr751_mont(x, t0); // t0 = x^2
fp2sqr751_mont(z, t1); // t1 = z^2
fp2mul751_mont(x, z, t2); // t2 = x*z
fp2mul751_mont(PK[0], t2, t3); // t3 = A*t2
fp2add751(t0, t1, t4); // t4 = t0+t1
fp2add751(t3, t4, t5); // t5 = t4+t3
fp2add751(t3, t5, t3); // t3 = t3+t5
fp2add751(t5, t5, t5); // t5 = t5+t5
fp2add751(t1, t1, l2P); // l2P = t1+t1
fp2add751(t1, l2P, l2P); // l2P = l2P+t1
fp2add751(t3, l2P, l2P); // l2P = l2P+t3
fp2add751(t5, l2P, l2P); // l2P = l2P+t5
fp2mul751_mont(t0, l2P, l2P); // l2P = l2P*t0
fp2sqr751_mont(t1, alpha_numer); // alpha_numer = t1^2
fp2sub751(l2P, alpha_numer, l2P); // l2P = l2P-alpha_numer
fp2add751(t0, t3, l1P); // l1P = t0+t3
fp2add751(t0, l1P, l1P); // l1P = l1P+t0
fp2mul751_mont(t5, l1P, l1P); // l1P = t5*l1P
fp2sub751(l1P, l2P, l1P); // l1P = l1P-l2P
fp2add751(l1P, l1P, l1P); // l1P = l1P+l1P
fp2sub751(t0, t1, l0P); // l0P = t0-t1
fp2mul751_mont(t5, l0P, l0P); // l0P = l0P*t5
fp2add751(l0P, l0P, l0P); // l0P = l0P+l0P
fp2sub751(l2P, l0P, l0P); // l0P = l2P-l0P
fp2sqr751_mont(l0P, P->X); // X3 = l0P^2
fp2sqr751_mont(l2P, P->Z); // Z3 = l2P^2
fp2mul751_mont(x, t5, alpha_numer); // alpha_numer = x*t5
fp2add751(alpha_numer, alpha_numer, alpha_numer); // alpha_numer = alpha_numer+alpha_numer
fp2add751(alpha_numer, alpha_numer, alpha_numer); // alpha_numer = alpha_numer+alpha_numer
fp2mul751_mont(t0, l0P, t0); // t0 = t0*l0P
fp2mul751_mont(l2P, PK[2], t5); // t5 = l2P*xQ
fp2mul751_mont(t1, t5, t5); // t5 = t5*t1
fp2mul751_mont(l1P, t2, beta_numer); // beta_numer = l1P*t2
fp2add751(t5, beta_numer, beta_numer); // beta_numer = beta_numer+t5
fp2mul751_mont(PK[2], beta_numer, beta_numer); // beta_numer = beta_numer*xQ
fp2add751(t0, beta_numer, beta_numer); // beta_numer = beta_numer+t0
fp2neg751(beta_numer); // beta_numer = -beta_numer
fp2mul751_mont(PK[0], t4, t5); // t5 = A*t4
fp2sqr751_mont(t4, t4); // t4 = t4^2
fp2add751(t2, t2, t2); // t2 = t2+t2
fp2add751(t2, t5, UP->X); // UP = t5+t2
fp2sub751(t5, t2, t5); // t5 = t5-t2
fp2mul751_mont(t2, UP->X, UP->X); // UP = t2*UP
fp2add751(t4, UP->X, UP->X); // UP = UP+t4
fp2mul751_mont(t2, t5, t2); // t2 = t2*t5
fp2add751(t2, t4, t2); // t2 = t2+t4
fp2add751(t4, t4, t4); // t4 = t4+t4
fp2add751(t2, t4, t2); // t2 = t2+t4
fp2mul751_mont(UP->X, t2, UP->X); // UP = UP*t2
fp2add751(UP->X, UP->X, UP->X); // UP = UP+UP
fp2add751(UP->X, UP->X, UP->X); // UP = UP+UP
fp2sub751(UP->X, P->X, UP->X); // UP = UP-X3
fp2mul751_mont(P->X, x, P->X); // X3 = x*X3
fp2sub751(UP->X, P->Z, UP->X); // UP = UP-Z3
fp2neg751(UP->X); // UP = -UP
fp2mul751_mont(l0P, UP->X, UP->X); // UP = UP*l0P
fp2mul751_mont(P->Z, l2P, UP->Z); // UPZ = Z3*l2P
fp2add751(UP->Z, UP->Z, UP->Z); // UPZ = UPZ+UPZ
fp2mul751_mont(P->Z, z, P->Z); // Z3 = z*Z3
fp2sqr751_mont(X, t0); // t0 = X^2
fp2sqr751_mont(Z, t6); // t6 = Z^2
fp2mul751_mont(X, Z, t2); // t2 = X*Z
fp2mul751_mont(PK[0], t2, t3); // t3 = A*t2
fp2add751(t0, t6, t4); // t4 = t0+t6
fp2add751(t3, t4, t5); // t5 = t4+t3
fp2add751(t3, t5, t3); // t3 = t3+t5
fp2add751(t5, t5, t5); // t5 = t5+t5
fp2add751(t6, t6, l2Q); // l2Q = t6+t6
fp2add751(t6, l2Q, l2Q); // l2Q = l2Q+t6
fp2add751(t3, l2Q, l2Q); // l2Q = l2Q+t3
fp2add751(t5, l2Q, l2Q); // l2Q = l2Q+t5
fp2mul751_mont(t0, l2Q, l2Q); // l2Q = l2Q*t0
fp2sqr751_mont(t6, alpha_denom); // alpha_denom = t6^2
fp2sub751(l2Q, alpha_denom, l2Q); // l2Q = l2Q-alpha_denom
fp2add751(t0, t3, l1Q); // l1Q = t0+t3
fp2add751(t0, l1Q, l1Q); // l1Q = l1Q+t0
fp2mul751_mont(t5, l1Q, l1Q); // l1Q = t5*l1Q
fp2sub751(l1Q, l2Q, l1Q); // l1Q = l1Q-l2Q
fp2add751(l1Q, l1Q, l1Q); // l1Q = l1Q+l1Q
fp2sub751(t0, t6, l0Q); // l0Q = t0-t6
fp2mul751_mont(t5, l0Q, l0Q); // l0Q = l0Q*t5
fp2add751(l0Q, l0Q, l0Q); // l0Q = l0Q+l0Q
fp2sub751(l2Q, l0Q, l0Q); // l0Q = l2Q-l0Q
fp2sqr751_mont(l0Q, Q->X); // X4 = l0Q^2
fp2sqr751_mont(l2Q, Q->Z); // Z4 = l2Q^2
fp2mul751_mont(X, t5, alpha_denom); // alpha_denom = X*t5
fp2add751(alpha_denom, alpha_denom, alpha_denom); // alpha_denom = alpha_denom+alpha_denom
fp2add751(alpha_denom, alpha_denom, alpha_denom); // alpha_denom = alpha_denom+alpha_denom
fp2mul751_mont(t0, l0Q, t0); // t0 = t0*l0Q
fp2mul751_mont(l2Q, PK[1], t5); // t5 = l2Q*xP
fp2mul751_mont(t6, t5, t5); // t5 = t5*t6
fp2mul751_mont(l1Q, t2, beta_denom); // beta_denom = l1Q*t2
fp2add751(t5, beta_denom, beta_denom); // beta_denom = beta_denom+t5
fp2mul751_mont(PK[1], beta_denom, beta_denom); // beta_denom = beta_denom*xP
fp2add751(t0, beta_denom, beta_denom); // beta_denom = beta_denom+t0
fp2neg751(beta_denom); // beta_denom = -beta_denom
fp2mul751_mont(PK[0], t4, t5); // t5 = A*t4
fp2sqr751_mont(t4, t4); // t4 = t4^2
fp2add751(t2, t2, t2); // t2 = t2+t2
fp2add751(t5, t2, UQ->X); // UQ = t5+t2
fp2sub751(t5, t2, t5); // t5 = t5-t2
fp2mul751_mont(UQ->X, t2, UQ->X); // UQ = t2*UQ
fp2add751(UQ->X, t4, UQ->X); // UQ = UQ+t4
fp2mul751_mont(t2, t5, t2); // t2 = t2*t5
fp2add751(t4, t2, t2); // t2 = t2+t4
fp2add751(t4, t4, t4); // t4 = t4+t4
fp2add751(t2, t4, t2); // t2 = t2+t4
fp2mul751_mont(UQ->X, t2, UQ->X); // UQ = UQ*t2
fp2add751(UQ->X, UQ->X, UQ->X); // UQ = UQ+UQ
fp2add751(UQ->X, UQ->X, UQ->X); // UQ = UQ+UQ
fp2sub751(UQ->X, Q->X, UQ->X); // UQ = UQ-X4
fp2mul751_mont(Q->X, X, Q->X); // X4 = X*X4
fp2sub751(UQ->X, Q->Z, UQ->X); // UQ = UQ-Z4
fp2neg751(UQ->X); // UQ = -UQ
fp2mul751_mont(l0Q, UQ->X, UQ->X); // UQ = UQ*l0Q
fp2mul751_mont(Q->Z, l2Q, UQ->Z); // UQZ = Z4*l2Q
fp2add751(UQ->Z, UQ->Z, UQ->Z); // UQZ = UQZ+UQZ
fp2mul751_mont(Q->Z, Z, Q->Z); // Z4 = Z*Z4
fp2mul751_mont(t1, t6, t2); // t2:=t1*t6;
fp2mul751_mont(t6, P->Z, t6); // t6:=t6*Z3;
fp2mul751_mont(t1, Q->Z, t1); // t1:=t1*Z4;
fp2mul751_mont(alpha_denom, Z, alpha_denom); // alpha_denom:=alpha_denom*Z;
fp2mul751_mont(alpha_denom, Q->Z, alpha_denom); // alpha_denom:=alpha_denom*Z4;
fp2mul751_mont(alpha_numer, z, alpha_numer); // alpha_numer:=alpha_numer*z;
fp2mul751_mont(alpha_numer, P->Z, alpha_numer); // alpha_numer:=alpha_numer*Z3;
fp2mul751_mont(PK[1], Q->Z, t3); // t3:=xP*Z4;
fp2sub751(t3, Q->X, t3); // t3:=t3-X4;
fp2mul751_mont(t3, l2Q, t3); // t3:=t3*l2Q;
fp2mul751_mont(PK[2], P->Z, t5); // t5:=xQ*Z3;
fp2sub751(t5, P->X, t5); // t5:=t5-X3;
fp2mul751_mont(t5, l2P, t5); // t5:=t5*l2P;
fp2mul751_mont(alpha_numer, t3, alpha_numer); // alpha_numer:=alpha_numer*t3;
fp2mul751_mont(t2, alpha_numer, alpha_numer); // alpha_numer:=alpha_numer*t2;
fp2mul751_mont(beta_numer, t3, beta_numer); // beta_numer:=beta_numer*t3;
fp2mul751_mont(t6, beta_numer, beta_numer); // beta_numer:=beta_numer*t6;
fp2mul751_mont(alpha_denom, t5, alpha_denom); // alpha_denom:=alpha_denom*t5;
fp2mul751_mont(t2, alpha_denom, alpha_denom); // alpha_denom:=alpha_denom*t2;
fp2mul751_mont(beta_denom, t5, beta_denom); // beta_denom:=beta_denom*t5;
fp2mul751_mont(t1, beta_denom, beta_denom); // beta_denom:=beta_denom*t1;
}
CRYPTO_STATUS Validate_PKA(unsigned char* pPublicKeyA, bool* valid, PCurveIsogenyStruct CurveIsogeny)
{ // Bob validating Alice's public key
// CurveIsogeny must be set up in advance using SIDH_curve_initialize().
f2elm_t PKA[4];
f2elm_t t0, t1, t2, t3, t4, t5, t6, t7, lambdaP, lambdaQ, lnQ, lnP, ldQ, ldP, uP = {0}, uQ = {0}, uPD = {0}, uQD = {0}, sqP, sqQ, sq;
f2elm_t rvalue, alphan, betan, alphad, betad, alpha_numer = {0}, alpha_denom = {0}, beta_numer = {0}, beta_denom = {0}, one = {0}, zero = {0};
point_proj_t P = {0}, Q = {0}, UP, UQ;
unsigned int j, e = CurveIsogeny->eB;
CRYPTO_STATUS Status = CRYPTO_ERROR_UNKNOWN;
// Choose a random element in GF(p751^2), assume that it is in Montgomery representation
Status = random_fp2(rvalue, CurveIsogeny);
if (Status != CRYPTO_SUCCESS) {
clear_words((void*)rvalue, 2*NWORDS_FIELD);
return Status;
}
to_fp2mont(((f2elm_t*)pPublicKeyA)[0], PKA[0]); // Conversion of Alice's public key to Montgomery representation
to_fp2mont(((f2elm_t*)pPublicKeyA)[1], PKA[1]);
to_fp2mont(((f2elm_t*)pPublicKeyA)[2], PKA[2]);
to_fp2mont(((f2elm_t*)pPublicKeyA)[3], PKA[3]);
fp2copy751(PKA[1], P->X);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, P->Z[0]);
fp2copy751(PKA[2], Q->X);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, Q->Z[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, one[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, uP[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, uQ[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, uPD[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, uQD[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, beta_numer[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, beta_denom[0]);
fp2add751(PKA[0], PKA[1], sqP); // sqP = xP+A
fp2mul751_mont(PKA[1], sqP, sqP); // sqP = xP*sqP
fp2add751(one, sqP, sqP); // sqP = sqP+1
fp2add751(PKA[0], PKA[2], sqQ); // sqQ = xQ+A
fp2mul751_mont(PKA[2], sqQ, sqQ); // sqQ = xQ*sqQ
fp2add751(one, sqQ, sqQ); // sqQ = sqQ+1
fp2mul751_mont(PKA[2], sqQ, sqQ); // sqQ = xQ*sqQ
fp2mul751_mont(PKA[1], sqP, sqP); // sqP = xP*sqP
fp2mul751_mont(sqQ, sqP, sq); // sq = sqP*sqQ
for (j = 1; j < e; j++) {
cube_indeterminant(alpha_numer, beta_numer, sq);
cube_indeterminant(alpha_denom, beta_denom, sq);
TPLline(P, Q, PKA, UP, UQ, alphan, betan, alphad, betad);
fp2mul751_mont(uP, alphan, alphan); // alphan = alphan*uP
fp2mul751_mont(uQD, alphan, alphan); // alphan = alphan*uQD
fp2mul751_mont(uQ, alphad, alphad); // alphad = alphad*uQ
fp2mul751_mont(uPD, alphad, alphad); // alphad = alphad*uPD
fp2mul751_mont(uQD, uPD, t0); // t0 = uQD*uPD
fp2mul751_mont(betan, t0, betan); // betan = betan*t0
fp2mul751_mont(betad, t0, betad); // betad = betad*t0
fp2mul751_mont(uP, UP->X, uP); // uP = uP*UP
fp2mul751_mont(uPD, UP->Z, uPD); // uPD = uPD*UPZ
fp2mul751_mont(uQ, UQ->X, uQ); // uQ = uQ*UQ
fp2mul751_mont(uQD, UQ->Z, uQD); // uQD = uQD*UQZ
line_indeterminant_TPL(alpha_numer, beta_numer, alphan, betan, sq);
line_indeterminant_TPL(alpha_denom, beta_denom, alphad, betad, sq);
}
cube_indeterminant(alpha_numer, beta_numer, sq);
cube_indeterminant(alpha_denom, beta_denom, sq);
fp2mul751_mont(PKA[0], P->Z, t0); // t0 = A*ZP
fp2add751(P->X, P->X, t1); // t1 = XP+XP
fp2add751(P->X, t1, t1); // t1 = t1+XP
fp2add751(t0, t1, t2); // t2 = t1+t0
fp2add751(t0, t2, t1); // t1 = t2+t0
fp2mul751_mont(P->X, t1, lambdaP); // lambdaP = t1*XP
fp2sqr751_mont(P->Z, t1); // t1 = ZP^2
fp2add751(lambdaP, t1, lambdaP); // lambdaP = lambdaP+t1
fp2mul751_mont(t1, P->Z, t1); // t1 = t1*ZP
fp2mul751_mont(sqP, t1, t0); // t0 = t1*sqP
fp2mul751_mont(t1, uPD, t1); // t1 = t1*uPD
fp2sqr751_mont(uP, t3); // t3 = uP^2
fp2mul751_mont(t0, t3, t0); // t0 = t0*t3
fp2add751(t0, t0, t0); // t0 = t0+t0
fp2mul751_mont(t2, t0, t2); // t2 = t2*t0
fp2add751(t2, t2, t2); // t2 = t2+t2
fp2mul751_mont(lambdaP, uPD, t3); // t3 = lambdaP*uPD
fp2sqr751_mont(t3, t4); // t4 = t3^2
*valid = is_equal_fp2(t2, t4); // Checks order P by
*valid = *valid & !is_equal_fp2(t2, zero); // asserting that 3^238*P has order 3
fp2mul751_mont(PKA[0], Q->Z, t5); // t5 = A*ZQ
fp2add751(Q->X, Q->X, t6); // t6 = XQ+XQ
fp2add751(Q->X, t6, t6); // t6 = t6+XQ
fp2add751(t5, t6, t2); // t2 = t6+t5
fp2add751(t2, t5, t6); // t6 = t2+t5
fp2mul751_mont(Q->X, t6, lambdaQ); // lambdaQ = t6*XQ
fp2sqr751_mont(Q->Z, t6); // t6 = ZQ^2
fp2add751(lambdaQ, t6, lambdaQ); // lambdaQ = lambdaQ+t6
fp2mul751_mont(Q->Z, t6, t6); // t6 = t6*ZQ
fp2mul751_mont(sqQ, t6, t5); // t5 = t6*sqQ
fp2mul751_mont(t6, uQD, t6); // t6 = t6*uQD
fp2sqr751_mont(uQ, t7); // t7 = uQ^2
fp2mul751_mont(t5, t7, t5); // t5 = t5*t7
fp2add751(t5, t5, t5); // t5 = t5+t5
fp2mul751_mont(t2, t5, t2); // t2 = t2*t5
fp2add751(t2, t2, t2); // t2 = t2+t2
fp2mul751_mont(lambdaQ, uQD, t7); // t7 = lambdaQ*uQD
fp2sqr751_mont(t7, t4); // t4 = t7^2
*valid = *valid & is_equal_fp2(t2, t4); // Checks order Q by
*valid = *valid & !is_equal_fp2(t2, zero); // asserting that 3^238*Q has order 3
fp2mul751_mont(PKA[2], P->Z, lnQ); // lnQ = xQ*ZP
fp2sub751(P->X, lnQ, lnQ); // lnQ = XP-lnQ
fp2mul751_mont(t3, lnQ, lnQ); // lnQ = t3*lnQ
fp2mul751_mont(uPD, lnQ, lnQ); // lnQ = lnQ*uPD
fp2sub751(lnQ, t0, lnQ); // lnQ = lnQ-t0
fp2mul751_mont(PKA[1], Q->Z, ldP); // ldP = xP*ZQ
fp2sub751(Q->X, ldP, ldP); // ldP = XQ-ldP
fp2mul751_mont(t7, ldP, ldP); // ldP = t7*ldP
fp2mul751_mont(uQD, ldP, ldP); // ldP = uQD*ldP
fp2sub751(ldP, t5, ldP); // ldP = ldP-t5
fp2mul751_mont(uP, uQ, lnP); // lnP = uP*uQ
fp2add751(lnP, lnP, lnP); // lnP = lnP+lnP
fp2mul751_mont(sqP, lnP, ldQ); // ldQ = lnP*sqP
fp2mul751_mont(lnP, sqQ, lnP); // lnP = lnP*sqQ
fp2mul751_mont(ldP, uP, ldP); // ldP = ldP*uP
fp2mul751_mont(t1, ldP, ldP); // ldP = ldP*t1
fp2mul751_mont(lnQ, uQ, lnQ); // lnQ = lnQ*uQ
fp2mul751_mont(t6, lnQ, lnQ); // lnQ = lnQ*t6
fp2mul751_mont(t1, t6, t1); // t1 = t1*t6
fp2mul751_mont(lnP, t1, lnP); // lnP = lnP*t1
fp2mul751_mont(ldQ, t1, ldQ); // ldQ = ldQ*t1
fp2copy751(alpha_numer, t0); // t0 = alpha_numer
fp2mul751_mont(lnP, t0, alpha_numer); // alpha_numer = lnP*t0
fp2mul751_mont(sqP, alpha_numer, alpha_numer); // alpha_numer = alpha_numer*sqP
fp2mul751_mont(lnQ, beta_numer, t1); // t1 = lnQ*beta_numer
fp2add751(alpha_numer, t1, alpha_numer); // alpha_numer = t1+alpha_numer
fp2mul751_mont(t0, sqQ, t1); // t1 = t0*sqQ
fp2mul751_mont(t1, lnQ, t1); // t1 = t1*lnQ
fp2mul751_mont(lnP, beta_numer, beta_numer); // beta_numer = lnP*beta_numer
fp2add751(t1, beta_numer, beta_numer); // beta_numer = beta_numer+t1
fp2copy751(alpha_denom, t0); // t0 = alpha_denom
fp2mul751_mont(ldP, t0, t1); // t1 = ldP*t0
fp2mul751_mont(sqP, t1, t1); // t1 = t1*sqP
fp2mul751_mont(beta_denom, ldQ, alpha_denom); // alpha_denom = ldQ*beta_denom
fp2add751(t1, alpha_denom, alpha_denom); // alpha_denom = alpha_denom+t1
fp2mul751_mont(t0, sqQ, t1); // t1 = t0*sqQ
fp2mul751_mont(ldQ, t1, t1); // t1 = ldQ*t1
fp2mul751_mont(beta_denom, ldP, beta_denom); // beta_denom = ldP*beta_denom
fp2add751(t1, beta_denom, beta_denom); // beta_denom = beta_denom+t1
fp2add751(alpha_numer, alpha_denom, t2); // t2 = alpha_numer+alpha_denom
fp2sqr751_mont(t2, t2); // t2 = t2^2
fp2mul751_mont(sqQ, t2, t2); // t2 = t2*sqQ
fp2add751(beta_numer, beta_denom, t4); // t4 = beta_numer+beta_denom
fp2sqr751_mont(t4, t4); // t4 = t4^2
fp2mul751_mont(sqP, t4, t4); // t4 = t4*sqP
*valid = *valid & !is_equal_fp2(t2, t4); // iff weil pairing != 1
fp2add751(PKA[1], PKA[2], t0); // t0 = xP+xQ
fp2mul751_mont(PKA[3], t0, t1); // t1 = xQP*t0
fp2sub751(t1, one, t1); // t1 = t1-1
fp2mul751_mont(PKA[1], PKA[2], t2); // t2 = xP*xQ
fp2add751(t1, t2, t1); // t1 = t2+t1
fp2sqr751_mont(t1, t1); // t1 = t1^2
fp2add751(t0, PKA[3], t0); // t0 = t0+xQP
fp2add751(PKA[0], t0, t0); // t0 = t0+A
fp2mul751_mont(t2, PKA[3], t2); // t2 = t2*xQP
fp2mul751_mont(t0, t2, t0); // t0 = t0*t2
fp2add751(t0, t0, t0); // t0 = t0+t0
fp2add751(t0, t0, t0); // t0 = t0+t0
*valid = *valid & is_equal_fp2(t0, t1); // Third point is difference
*valid = *valid & test_curve(PKA[0], rvalue, CurveIsogeny);
return CRYPTO_SUCCESS;
}
CRYPTO_STATUS Validate_PKB(unsigned char* pPublicKeyB, bool* valid, PCurveIsogenyStruct CurveIsogeny)
{ // Bob validating Alice's public key
// CurveIsogeny must be set up in advance using SIDH_curve_initialize().
f2elm_t PKB[4];
f2elm_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, fP = {0}, fQ = {0}, UP = {0}, UQ = {0}, VP = {0}, VQ = {0};
f2elm_t rvalue, cP, cQ, alphaQi, betaPi, alphaPi, betaQi, alphaP = {0}, alphaQ = {0}, betaP = {0}, betaQ = {0}, one = {0}, zero = {0};
point_proj_t P = {0}, Q = {0};
unsigned int i, e = CurveIsogeny->oAbits;
CRYPTO_STATUS Status = CRYPTO_ERROR_UNKNOWN;
// Choose a random element in GF(p751^2), assume that it is in Montgomery representation
Status = random_fp2(rvalue, CurveIsogeny);
if (Status != CRYPTO_SUCCESS) {
clear_words((void*)rvalue, 2*NWORDS_FIELD);
return Status;
}
to_fp2mont(((f2elm_t*)pPublicKeyB)[0], PKB[0]); // Conversion of Bob's public key to Montgomery representation
to_fp2mont(((f2elm_t*)pPublicKeyB)[1], PKB[1]);
to_fp2mont(((f2elm_t*)pPublicKeyB)[2], PKB[2]);
to_fp2mont(((f2elm_t*)pPublicKeyB)[3], PKB[3]);
fp2copy751(PKB[1], P->X);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, P->Z[0]);
fp2copy751(PKB[2], Q->X);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, Q->Z[0]);
fp2copy751(PKB[1], t0);
fp2copy751(PKB[2], t1);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, one[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, fP[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, fQ[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, UP[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, UQ[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, VP[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, VQ[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, betaP[0]);
fpcopy751((digit_t*)CurveIsogeny->Montgomery_one, betaQ[0]);
fp2add751(PKB[0], PKB[2], cQ); // cQ = xQ+A
fp2add751(PKB[0], PKB[1], cP); // cP = xP+A
fp2mul751_mont(cQ, PKB[2], cQ); // cQ = cQ*xQ
fp2mul751_mont(cP, PKB[1], cP); // cP = cP*xP
fp2add751(cQ, one, cQ); // cQ = cQ+1
fp2add751(cP, one, cP); // cP = cP+1
fp2mul751_mont(cQ, PKB[2], cQ); // cQ = cQ*xQ
fp2mul751_mont(cP, PKB[1], cP); // cP = cP*xP
for (i = 1; i < e; i++) {
fp2sqr751_mont(P->X, t2); // t2 = XP^2
fp2sqr751_mont(P->Z, t11); // t11 = ZP^2
fp2sqr751_mont(Q->X, t4); // t4 = XQ^2
fp2sqr751_mont(Q->Z, t10); // t10 = ZQ^2
fp2sub751(t2, t11, t6); // t6 = t2-t11
fp2add751(t2, t2, betaPi); // betaPi = t2+t2
fp2add751(t2, t11, t2); // t2 = t2+t11
fp2sub751(t4, t10, t7); // t7 = t4-t10
fp2add751(t4, t4, alphaQi); // alphaQi = t4+t4
fp2add751(t4, t10, t4); // t4 = t4+t10
fp2mul751_mont(P->X, P->Z, t3); // t3 = XP*ZP
fp2mul751_mont(Q->X, Q->Z, t5); // t5 = XQ*ZQ
fp2mul751_mont(PKB[0], t3, t8); // t8 = A*t3
fp2mul751_mont(PKB[0], t5, t9); // t9 = A*t5
fp2add751(t3, t3, t3); // t3 = t3+t3
fp2add751(t5, t5, t5); // t5 = t5+t5
fp2add751(betaPi, t8, betaPi); // betaPi = betaPi+t8
fp2add751(t2, t8, t8); // t8 = t8+t2
fp2add751(alphaQi, t9, alphaQi); // alphaQi = alphaQi+t9
fp2add751(t4, t9, t9); // t9 = t9+t4
fp2mul751_mont(PKB[0], t2, t2); // t2 = A*t2
fp2mul751_mont(PKB[0], t4, t4); // t4 = A*t4
fp2add751(betaPi, t8, betaPi); // betaPi = betaPi+t8
fp2add751(alphaQi, t9, alphaQi); // alphaQi = alphaQi+t9
fp2mul751_mont(betaPi, t1, betaPi); // betaPi = betaPi*t1
fp2mul751_mont(alphaQi, t0, alphaQi); // alphaQi = alphaQi*t0
fp2mul751_mont(P->X, t6, t1); // t1 = XP*t6
fp2mul751_mont(Q->X, t7, t0); // t0 = XQ*t7
fp2sub751(t1, betaPi, t1); // t1 = t1-betaPi
fp2sub751(t0, alphaQi, t0); // t0 = t0-alphaQi
fp2mul751_mont(VP, t1, betaPi); // betaPi = VP*t1
fp2mul751_mont(VQ, t0, alphaQi); // alphaQi = VQ*t0
fp2mul751_mont(Q->Z, t10, t10); // t10 = t10*ZQ
fp2mul751_mont(P->Z, t11, t11); // t11 = t11*ZP
fp2mul751_mont(t10, UQ, t10); // t10 = t10*UQ
fp2mul751_mont(t11, UP, t11); // t11 = t11*UP
fp2mul751_mont(betaPi, t10, betaPi); // betaPi = betaPi*t10
fp2mul751_mont(alphaQi, t11, alphaQi); // alphaQi = alphaQi*t11
fp2mul751_mont(t10, t11, t10); // t10 = t10*t11
fp2add751(t10, t10, t10); // t10 = t10+t10
fp2mul751_mont(cQ, t10, alphaPi); // alphaPi = cQ*t10
fp2mul751_mont(cP, t10, betaQi); // betaQi = cP*t10
fp2mul751_mont(UQ, t7, UQ); // UQ = UQ*t7
fp2mul751_mont(UP, t6, UP); // UP = UP*t6
fp2add751(t8, t8, t8); // t8 = t8+t8
fp2add751(t9, t9, t9); // t9 = t9+t9
fp2mul751_mont(t3, t8, P->Z); // ZP = t3*t8
fp2mul751_mont(t5, t9, Q->Z); // ZQ = t5*t9
fp2mul751_mont(t8, P->X, t8); // t8 = t8*XP
fp2mul751_mont(t9, Q->X, t9); // t9 = t9*XQ
fp2sqr751_mont(t6, P->X); // XP = t6^2
fp2sqr751_mont(t7, Q->X); // XQ = t7^2
fp2add751(t4, t5, t4); // t4 = t4+t5
fp2add751(t5, t4, t4); // t4 = t4+t5
fp2add751(t2, t3, t2); // t2 = t2+t3
fp2add751(t3, t2, t2); // t2 = t2+t3
fp2mul751_mont(t4, t5, t4); // t4 = t4*t5
fp2mul751_mont(t2, t3, t2); // t2 = t2*t3
fp2add751(t4, Q->X, t4); // t4 = t4+XQ
fp2add751(t2, P->X, t2); // t2 = t2+XP
fp2mul751_mont(UQ, t4, UQ); // UQ = UQ*t4
fp2mul751_mont(UP, t2, UP); // UP = UP*t2
fp2sqr751_mont(t9, t9); // t9 = t9^2
fp2sqr751_mont(t8, t8); // t8 = t8^2
fp2mul751_mont(VQ, t9, VQ); // VQ = VQ*t9
fp2mul751_mont(VP, t8, VP); // VP = VP*t8
fp2add751(VQ, VQ, VQ); // VQ = VQ+VQ
fp2add751(VP, VP, VP); // VP = VP+VP
fp2sqr751_mont(alphaP, t4); // t4 = alphaP^2
fp2sqr751_mont(betaP, t5); // t5 = betaP^2
fp2mul751_mont(alphaP, betaP, t6); // t6 = alphaP*betaP
fp2add751(t6, t6, t6); // t6 = t6+t6
fp2mul751_mont(t4, cP, t4); // t4 = t4*cP
fp2mul751_mont(t5, cQ, t5); // t5 = t5*cQ
fp2add751(t4, t5, t4); // t4 = t4+t5
fp2mul751_mont(alphaPi, t4, alphaP); // alphaP = alphaPi*t4
fp2mul751_mont(betaPi, t4, betaP); // betaP = betaPi*t4
fp2mul751_mont(betaPi, t6, t4); // t4 = t6*betaPi
fp2mul751_mont(t4, cQ, t4); // t4 = t4*cQ
fp2mul751_mont(t6, alphaPi, t6); // t6 = t6*alphaPi
fp2mul751_mont(cP, t6, t6); // t6 = t6*cP
fp2add751(alphaP, t4, alphaP); // alphaP = alphaP+t4
fp2add751(betaP, t6, betaP); // betaP = betaP+t6
fp2sqr751_mont(alphaQ, t4); // t4 = alphaQ^2
fp2sqr751_mont(betaQ, t5); // t5 = betaQ^2
fp2mul751_mont(alphaQ, betaQ, t6); // t6 = alphaQ*betaQ
fp2add751(t6, t6, t6); // t6 = t6+t6
fp2mul751_mont(t4, cP, t4); // t4 = t4*cP
fp2mul751_mont(t5, cQ, t5); // t5 = t5*cQ
fp2add751(t4, t5, t4); // t4 = t4+t5
fp2mul751_mont(alphaQi, t4, alphaQ); // alphaQ = alphaQi*t4
fp2mul751_mont(betaQi, t4, betaQ); // betaQ = betaQi*t4
fp2mul751_mont(betaPi, t6, t4); // t4 = t6*betaPi
fp2mul751_mont(cQ, t4, t4); // t4 = t4*cQ
fp2mul751_mont(t6, betaQi, t5); // t5 = t6*betaQi
fp2mul751_mont(t5, cQ, t5); // t5 = t5*cQ
fp2add751(alphaQ, t5, alphaQ); // alphaQ = alphaQ+t5
fp2mul751_mont(t6, alphaQi, t5); // t5 = t6*alphaQi
fp2mul751_mont(cP, t5, t5); // t5 = t5*cP
fp2add751(betaQ, t5, betaQ); // betaQ = betaQ+t5
fp2mul751_mont(PKB[1], Q->Z, t0); // t0 = xP*ZQ
fp2mul751_mont(PKB[2], P->Z, t1); // t1 = xQ*ZP
fp2sub751(Q->X, t0, t2); // t2 = XQ-t0
fp2sub751(P->X, t1, t3); // t3 = XP-t1
fp2mul751_mont(t2, P->Z, t2); // t2 = t2*ZP
fp2mul751_mont(t3, Q->Z, t3); // t3 = t3*ZQ
fp2mul751_mont(alphaP, t2, alphaP); // alphaP = alphaP*t2
fp2mul751_mont(betaP, t2, betaP); // betaP = betaP*t2
fp2mul751_mont(alphaQ, t3, alphaQ); // alphaQ = alphaQ*t3
fp2mul751_mont(betaQ, t3, betaQ); // betaQ = betaQ*t3
}
fp2mul751_mont(PKB[2], P->Z, t2); // t2 = xQ*ZP
fp2mul751_mont(PKB[1], Q->Z, t3); // t3 = xP*ZQ
fp2sub751(P->X, t2, t2); // t2 = XP-t2
fp2sub751(Q->X, t3, t3); // t3 = XQ-t3
fp2mul751_mont(t2, Q->Z, t2); // t2 = t2*ZQ
fp2mul751_mont(t3, P->Z, t3); // t3 = t3*ZP
fp2sqr751_mont(alphaP, t4); // t4 = alphaP^2
fp2sqr751_mont(betaP, t5); // t5 = betaP^2
fp2mul751_mont(alphaP, betaP, t6); // t6 = alphaP*betaP
fp2add751(t6, t6, t6); // t6 = t6+t6
fp2sqr751_mont(alphaQ, t7); // t7 = alphaQ^2
fp2sqr751_mont(betaQ, t8); // t8 = betaQ^2
fp2mul751_mont(alphaQ, betaQ, t9); // t9 = alphaQ*betaQ
fp2add751(t9, t9, t9); // t9 = t9+t9
fp2mul751_mont(t4, cP, t4); // t4 = t4*cP
fp2mul751_mont(t5, cQ, t5); // t5 = t5*cQ
fp2mul751_mont(t7, cP, t7); // t7 = t7*cP
fp2mul751_mont(t8, cQ, t8); // t8 = t8*cQ
fp2add751(t4, t5, t4); // t4 = t4+t5
fp2add751(t7, t8, t7); // t7 = t7+t8
fp2mul751_mont(t2, t4, t4); // t4 = t2*t4
fp2mul751_mont(t3, t7, t7); // t7 = t3*t7
fp2sub751(t4, t7, t7); // t7 = t4-t7
fp2sqr751_mont(t7, t7); // t7 = t7^2
fp2mul751_mont(t3, t9, t3); // t3 = t3*t9
fp2mul751_mont(t2, t6, t2); // t2 = t2*t6
fp2sub751(t3, t2, t3); // t3 = t3-t2
fp2sqr751_mont(t3, t3); // t3 = t3^2
fp2mul751_mont(cP, t3, t3); // t3 = t3*cP
fp2mul751_mont(cQ, t3, t3); // t3 = t3*cQ
fp2add751(one, one, t10);
fp2add751(t10, t10, t11); // t11 = 4
fp2add751(t10, PKB[0], t10); // t10 = A+2
*valid = !is_equal_fp2(Q->Z, zero); // Checks order Q
xDBL(Q, Q, t10, t11); // xDBL(XQ,ZQ,A+2,4);
*valid = *valid & is_equal_fp2(Q->Z, zero);
*valid = *valid & !is_equal_fp2(P->Z, zero); // Checks order P
xDBL(P, P, t10, t11); // xDBL(XP,ZP,A+2,4);
*valid = *valid & is_equal_fp2(P->Z, zero);
*valid = *valid & !is_equal_fp2(t3, t7); // Checks Weil pairing non trivial
fp2add751(PKB[1], PKB[2], t0); // t0 = xP+xQ
fp2mul751_mont(PKB[3], t0, t1); // t1 = xQP*t0
fp2sub751(t1, one, t1); // t1 = t1-1
fp2mul751_mont(PKB[1], PKB[2], t2); // t2 = xP*xQ
fp2add751(t1, t2, t1); // t1 = t2+t1
fp2sqr751_mont(t1, t1); // t1 = t1^2
fp2add751(t0, PKB[3], t0); // t0 = t0+xQP
fp2add751(PKB[0], t0, t0); // t0 = t0+A
fp2mul751_mont(PKB[3], t2, t2); // t2 = t2*xQP
fp2mul751_mont(t0, t2, t0); // t0 = t0*t2
fp2add751(t0, t0, t0); // t0 = t0+t0
fp2add751(t0, t0, t0); // t0 = t0+t0
*valid = *valid & is_equal_fp2(t0, t1);
*valid = *valid & test_curve(PKB[0], rvalue, CurveIsogeny);
return CRYPTO_SUCCESS;
}