-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathload_deepvoxels.py
110 lines (79 loc) · 3.8 KB
/
load_deepvoxels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import numpy as np
import imageio
def load_dv_data(scene='cube', basedir='/data/deepvoxels', testskip=8):
def parse_intrinsics(filepath, trgt_sidelength, invert_y=False):
# Get camera intrinsics
with open(filepath, 'r') as file:
f, cx, cy = list(map(float, file.readline().split()))[:3]
grid_barycenter = np.array(list(map(float, file.readline().split())))
near_plane = float(file.readline())
scale = float(file.readline())
height, width = map(float, file.readline().split())
try:
world2cam_poses = int(file.readline())
except ValueError:
world2cam_poses = None
if world2cam_poses is None:
world2cam_poses = False
world2cam_poses = bool(world2cam_poses)
print(cx,cy,f,height,width)
cx = cx / width * trgt_sidelength
cy = cy / height * trgt_sidelength
f = trgt_sidelength / height * f
fx = f
if invert_y:
fy = -f
else:
fy = f
# Build the intrinsic matrices
full_intrinsic = np.array([[fx, 0., cx, 0.],
[0., fy, cy, 0],
[0., 0, 1, 0],
[0, 0, 0, 1]])
return full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses
def load_pose(filename):
assert os.path.isfile(filename)
nums = open(filename).read().split()
return np.array([float(x) for x in nums]).reshape([4,4]).astype(np.float32)
H = 512
W = 512
deepvoxels_base = '{}/train/{}/'.format(basedir, scene)
full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses = parse_intrinsics(os.path.join(deepvoxels_base, 'intrinsics.txt'), H)
print(full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses)
focal = full_intrinsic[0,0]
print(H, W, focal)
def dir2poses(posedir):
poses = np.stack([load_pose(os.path.join(posedir, f)) for f in sorted(os.listdir(posedir)) if f.endswith('txt')], 0)
transf = np.array([
[1,0,0,0],
[0,-1,0,0],
[0,0,-1,0],
[0,0,0,1.],
])
poses = poses @ transf
poses = poses[:,:3,:4].astype(np.float32)
return poses
posedir = os.path.join(deepvoxels_base, 'pose')
poses = dir2poses(posedir)
testposes = dir2poses('{}/test/{}/pose'.format(basedir, scene))
testposes = testposes[::testskip]
valposes = dir2poses('{}/validation/{}/pose'.format(basedir, scene))
valposes = valposes[::testskip]
imgfiles = [f for f in sorted(os.listdir(os.path.join(deepvoxels_base, 'rgb'))) if f.endswith('png')]
imgs = np.stack([imageio.imread(os.path.join(deepvoxels_base, 'rgb', f))/255. for f in imgfiles], 0).astype(np.float32)
testimgd = '{}/test/{}/rgb'.format(basedir, scene)
imgfiles = [f for f in sorted(os.listdir(testimgd)) if f.endswith('png')]
testimgs = np.stack([imageio.imread(os.path.join(testimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)
valimgd = '{}/validation/{}/rgb'.format(basedir, scene)
imgfiles = [f for f in sorted(os.listdir(valimgd)) if f.endswith('png')]
valimgs = np.stack([imageio.imread(os.path.join(valimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)
all_imgs = [imgs, valimgs, testimgs]
counts = [0] + [x.shape[0] for x in all_imgs]
counts = np.cumsum(counts)
i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]
imgs = np.concatenate(all_imgs, 0)
poses = np.concatenate([poses, valposes, testposes], 0)
render_poses = testposes
print(poses.shape, imgs.shape)
return imgs, poses, render_poses, [H,W,focal], i_split