-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordembed_nnet.py
97 lines (73 loc) · 2.67 KB
/
wordembed_nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from sklearn.manifold import TSNE
from theano import tensor as T
import theano
import numpy as np
import cPickle
import pylab
# data
data = cPickle.load(open('data.pk', 'rb'))
trainx = data['train_inputs']
trainy = data['train_targets']
testx = data['test_inputs']
testy = data['test_targets']
# constants
vocab = data['vocab']
vocab_size = len(vocab)
context_len = 3
embed_dim = 16
num_hidden = 128 # change this later maybe
embed_layer_dim = context_len * embed_dim
batch_size = 20
def floatX(X):
return np.asarray(X, dtype=theano.config.floatX)
def init_weights(shape):
return theano.shared(floatX(np.random.randn(*shape) * 0.01))
# Variables for Data!
idxs = T.imatrix()
y = T.ivector()
# Parameters that have to be updated!
# these will be vector representations of words in the vocabulary
embeddings = np.asarray(np.random.randn(vocab_size, embed_dim),
dtype=theano.config.floatX)
t_embeddings = theano.shared(embeddings)
# we use idxs.shape[0] to deal with batches
x = t_embeddings[idxs].reshape((idxs.shape[0], embed_layer_dim))
w_h = init_weights((embed_layer_dim, num_hidden))
w_o = init_weights((num_hidden, vocab_size))
params = [t_embeddings, w_h, w_o]
# define model and costs
def model(x, w_h, w_o):
h = T.nnet.sigmoid(T.dot(x, w_h))
pyx = T.nnet.softmax(T.dot(h, w_o))
return pyx
py_x = model(x, w_h, w_o)
y_x = T.argmax(py_x, axis=1)
cost = T.mean(T.nnet.categorical_crossentropy(py_x, y))
# define training function and update method
def sgd(cost, params, lr=0.1):
grads = T.grad(cost=cost, wrt=params)
updates = []
for p, g in zip(params, grads):
updates.append([p, p - g * lr])
return updates
updates = sgd(cost, params) # updated params w/sgd with given cost function
train = theano.function(inputs=[idxs, y], outputs=cost, updates=updates,
allow_input_downcast=True)
predict = theano.function(inputs=[idxs], outputs=y_x,
allow_input_downcast=True)
# start training
for i in range(100):
for start, end in zip(range(0, len(trainx), batch_size), range(batch_size,
len(trainx), batch_size)):
cost = train(trainx[start:end], trainy[start:end])
print np.mean(testy == predict(testx))
# use display a mapping of the word vectors using tsne
tsne_model = TSNE(n_components=2, random_state=0)
tsne_results = tsne_model.fit_transform(embeddings)
pylab.figure(figsize=(15, 15))
for i, w in enumerate(vocab):
pylab.text(tsne_results[i][0], tsne_results[i][1], w)
pylab.xlim(tsne_results[:, 0].min(), tsne_results[:, 0].max())
pylab.ylim(tsne_results[:, 1].min(), tsne_results[:, 1].max())
pylab.savefig('tsne_plot')
pylab.close()