-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfilterbasis.tex
1900 lines (1828 loc) · 106 KB
/
filterbasis.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% !TEX root = thesis.tex
\documentclass[thesis]{subfiles}
\begin{document}
\chapter{Inter-Filter Connectivity}\label{deeproots}
\begin{chapquote}{Marvin Minsky, \textit{Prologue: A View from 1988, Perceptrons}}
``The marvelous powers of the brain emerge not from any single, uniformly structured connectionist network but from highly evolved arrangements of smaller, specialized networks which are interconnected in very specific ways.''
\end{chapquote}
%Learning Filters with Limited Channel Extents
%It is well understood that the structure of a neural network is critical to its ability to learn from labelled training data and to generalize. Whilst it has been shown that an infinitely wide hidden layer is a universal approximator~\citep{hornik89a}, in practice wide shallow networks do not learn as well as thinner deeper ones --- as shown by recent research~\citep{Krizhevsky2012,Szegedy2014going,Simonyan2014verydeep,He2015}.
%This does not appear to be a limitation of finite capacity, since it has been proposed that at least some \glspl{dnn}\index{DNN} are by representable by shallow networks~\citep{Ba2013dothey}. Rather it seems to be a consequence of limitations in our methods of learning the weights of \glspl{dnn}\index{DNN}.
With few exceptions, state-of-the-art \glspl{cnn}\index{CNN} for image recognition are largely monolithic, with each filter operating on the \glspl{featuremap}\index{feature map} of all filters on a previous layer. Interestingly, this is in stark contrast to what we understand of biological neural networks\index{neural network}, where we see ``highly evolved arrangements of smaller, specialized networks which are interconnected in very specific ways''~\citep{minsky1988perceptrons}.
Yet it has been shown that a large proportion of the learned weights in \glspl{dnn}\index{DNN} are redundant~\citep{Denil2013predicting}, a property that has been widely exploited to make neural networks\index{neural network} smaller and more computationally efficient~\citep{Szegedy2014going,Denton2014efficient}.
%It is unsurprising then that regularization is a critical part of training such networks using large datasets~\citep{Krizhevsky2012}. Without regularization \glspl{dnn}\index{DNN} are susceptible to overfitting. Regularization may be achieved by weight decay\index{weight decay} or dropout~\citep{Hinton2012}. Furthermore
A carefully designed sparse network connection structure can have a regularizing effect. \Glspl{cnn}~\citep{Fuk80,Lecun1998} embody this idea, using a sparse convolutional connection structure to exploit the locality of natural image structure. In consequence, they are easier to train.
In \cref{lowrankfilters} learning a low-rank spatial basis for filters was found to improve generalization while reducing the computational complexity and model size of a \gls{cnn} with only full rank filters. However, this work addressed only the spatial extents of the convolutional filters (\ie $h$ and $w$ in \cref{fig:normalconv}). In this work we will show that a similar idea can be applied to the channel extents --- \ie filter inter-connectivity --- by using \emph{filter groups\index{filter groups}}~\citep{Krizhevsky2012}.
%We show that simple alterations to state-of-the-art \gls{cnn} architectures can drastically reduce computational cost and model size without compromising accuracy.
% Try to find a creative commons version of this
%\begin{figure}[t]
%\centering
%\includegraphics[width=0.25\columnwidth, page=1]{figs/tree_root.jpg}
%\caption{This work introduces the idea of using hierarchical filter group\index{filter groups}ing to create \glsfmttext{cnn} connection structures that resemble tree roots. Applying the technique to existing state-of-the-art networks allows improved efficiency without compromising accuracy.}
%\label{fig:tree}
%\end{figure}
% Maybe we need something like this here too, don't know
%It has been shown that reducing the co-adaption of filters is beneficial to generalization in \glspl{dnn}\index{DNN}~\citep{Hinton2012,goodfellow2013maxout,Cogswell2016}. Co-adaption occurs when hidden layer filters (or neurons\index{neuron}) rely on one another to fit training data, such that their outputs become highly correlated. However, instead of using a modified loss, regularization penalty, or randomized network connectivity during training to prevent co-adaption of features, we take a much more direct approach. We use hierarchical filter groups\index{filter groups} (see \cref{regularizingstructure}) to allow the network itself to learn independent filters. By restricting the connectivity between filters on subsequent layers the network is forced to learn filters of limited dependence. We allow the standard network optimization (\eg \gls{sgd}) to learn appropriate weights within this restricted architecture.
In this chapter we show that simple alterations to the architecture of state-of-the-art \glspl{cnn}\index{CNN} for image recognition can drastically reduce computational cost and model size while maintaining (or even increasing) accuracy, through a novel structural prior reducing the connectivity in monolithic networks to reflect more closely the sparse, localized filter co-dependencies within a trained network.
\section{Related Work}\label{previouswork}
Most previous work on reducing the computational complexity of \glspl{cnn}\index{CNN} has focused on approximating convolutional filters in the spatial (as opposed to the channel) domain, either by using low-rank approximations~\citep{mamalet2012simplifying,journals/corr/JaderbergVZ14, conf/cvpr/RigamontiSLF13, journals/corr/LebedevGROL14}, or Fourier transform based convolution~\citep{mathieu2013fast, rippel2015spectral}. More general methods have used reduced precision number representations~\citep{1502.02551v1} or compression of previously trained models~\citep{Chen2015,Kim2016}. Here we explore methods that reduce the computational impact of the large number of filter channels within state-of-the art networks. Specifically, we consider decreasing the number of incoming connections to neurons.
\begin{figure}[tbp]
\begin{subfigure}[b]{0.95\textwidth}
\centering
\includegraphics[width=0.66\textwidth, page=1]{Figs/PDF/groupfig}
\caption{Convolution}\label{fig:normalconv}
\end{subfigure}
~
\begin{subfigure}[b]{0.95\textwidth}
\centering
\includegraphics[width=0.66\textwidth, page=2]{Figs/PDF/groupfig}
\caption{Convolution with filter groups\index{filter groups}}\label{fig:groupedconv}
\end{subfigure}
\caption[Convolutional filter groups\index{filter groups}]{\textbf{Convolutional Filter groups\index{filter groups}.} (a) Convolutional filters (yellow) typically have the same channel dimension $c_1$ as the input \glspl{featuremap}\index{feature map} (gray) on which they operate. However, (b) with filter group\index{filter groups}ing, $g$ independent groups of $c_2/g$ filters operate on a fraction $c_1/g$ of the input \gls{featuremap}\index{feature map} channels, reducing filter dimensions from $h$$\times$$w$$\times$$c_1$ to $h$$\times$$w$$\times$$c_1/g$. This change does not affect the dimensions of the input and output \glspl{featuremap}\index{feature map} but significantly reduces computational complexity and the number of model parameters.}\label{fig:groupconfig}
\end{figure}
\begin{figure}[tbp]
\centering
\pgfplotstableread[col sep=comma]{rootdata/alexnetma.csv}\datatable
\pgfplotsset{major grid style={dotted,red}}
\begin{tikzpicture}
\begin{axis}[
width=0.95\textwidth,
height=0.33\textheight,
axis x line=bottom,
ylabel=Top-5 Val.\ Error,
xlabel=Model Parameters (\# floats),
axis lines=left,
enlarge x limits=0.12,
enlarge y limits=0.1,
grid=major,
%xmin=0,
ytick={0.01,0.02,...,0.21},
ymin=0.18,ymax=0.2,
yticklabel={\pgfmathparse{\tick*100}\pgfmathprintnumber{\pgfmathresult}\%},style={
/pgf/number format/fixed,
/pgf/number format/precision=1,
},
legend style={at={(0.98,0.98)}, anchor=north east, column sep=0.5em},
legend columns=2,
\setplotcyclecat{2},
every axis plot/.append style={fill},
]
\addplot+[mark=*,nodes near coords,only marks,
point meta=explicit symbolic,
% x filter/.code={
% \ifnum\coordindex>2\def\pgfmathresult{}\fi
% },
] table[meta=Network,x=Param.,y expr={1 - \thisrow{Top-5 Acc.} },]{\datatable};
%\addplot[mark=square*,mark options={fill=blue},nodes near coords,only marks,
% point meta=explicit symbolic,
% x filter/.code={
% \ifnum\coordindex<3\def\pgfmathresult{}\fi
% },
%] table[meta=Network,x=Param.,y expr={1 - \thisrow{Top-5 Acc.} },]{\datatable};
%\legend{Standard AlexNet}%, Alternate Filter Grouping}
\end{axis}
\end{tikzpicture}
\caption[AlexNet performance and filter groups\index{filter groups}]{\textbf{AlexNet Performance and Filter Groups.} Model Parameters \vs top-5 error for variants of the AlexNet model on \gls{ilsvrc} image classification dataset. Models with moderate numbers of filter groups\index{filter groups} have far fewer parameters, yet surprisingly maintain comparable error.}\label{fig:alexnetplots}
\end{figure}
\paragraph{AlexNet Filter groups\index{filter groups}}\label{alexnetfiltergroups} Amongst the seminal contributions made by \citet{Krizhevsky2012}~is the use of `filter groups\index{filter groups|textbf}' in the convolutional layers of a \gls{cnn} (see \cref{fig:groupconfig}). While their use of filter groups\index{filter groups} was necessitated by the practical need to sub-divide the work of training a large network across multiple \gls{gpu}s, the side effects are somewhat surprising. Specifically, the authors observe that independent filter groups\index{filter groups} learn a separation of responsibility (colour features \vs texture features) that is consistent over different random initializations. Also surprising, and not explicitly stated by \citet{Krizhevsky2012}, is the fact that the AlexNet network has approximately 57\% fewer connection weights than the corresponding network without filter groups\index{filter groups}. This is due to the reduction in the input channel dimension of the grouped convolution filters (see \cref{fig:alexnetplots}).
Despite the large difference in the number of parameters between the models, both achieve comparable accuracy on \gls{ilsvrc} --- in fact the smaller grouped network gets $\approx1$\% lower top-5 validation error. This paper builds upon these findings and extends them to state-of-the-art networks.
\paragraph{Low-dimensional Embeddings}
\citet{Lin2013NiN} proposed a method to reduce the dimensionality of convolutional \glspl{featuremap}\index{feature map}.
By using relatively cheap `1$\times$1' convolutional layers (\ie layers comprising $d$ filters of size 1$\times$1$\times$$c$, where $d<c$), they learn to map \glspl{featuremap}\index{feature map} into lower-dimensional spaces, \ie to new \glspl{featuremap}\index{feature map} with fewer channels. Subsequent spatial filters operating on this lower dimensional input space require significantly less computation. This method is used in most state-of-the-art networks for image classification to reduce computation~\citep{Szegedy2014going,He2015}. Our method is complementary.
\paragraph{GoogLeNet} In contrast to much other work, \citet{Szegedy2014going} propose a \gls{cnn} architecture that is highly optimized for computational efficiency. GoogLeNet uses, as a basic building block, a mixture of low-dimensional embeddings~\citep{Lin2013NiN} and heterogeneously-sized spatial filters --- collectively an \Gls{inception} module.
There are two distinct forms of convolutional layers in the \gls{inception}\index{inception} module, low-dimensional embeddings (1$\times$1) and spatial (3$\times$3, 5$\times $5). GoogLeNet keeps large, expensive spatial convolutions (\ie 5$\times$5) to a minimum by using few of these filters, using more 3$\times$3 convolutions, and even more 1$\times$1 filters. The motivation is that most of the convolutional filters respond to localized patterns in a small receptive field, with few requiring a larger receptive field. The number of filters in each successive \gls{inception}\index{inception} module increases slowly with decreasing \gls{featuremap}\index{feature map} size, in order to maintain computational performance. GoogLeNet is by far the most efficient state-of-the-art network for \gls{ilsvrc}, achieving near state-of-the-art accuracy with the lowest computation/model size. However, we will show that even such an efficient and optimized network architecture benefits from our method.
\paragraph{Low-Rank Approximations}
Various authors have suggested approximating learned convolutional filters using tensor decomposition \citep{journals/corr/JaderbergVZ14,journals/corr/LebedevGROL14,Kim2016}. For example, \citet{journals/corr/JaderbergVZ14} propose approximating the convolutional filters in a trained network with representations that are low-rank both in the spatial and the channel domains. This approach significantly decreases computational complexity, albeit at the expense of a small amount of accuracy. In this chapter we are not approximating an existing model's weights but creating a new network architecture with explicit structural sparsity, which is then trained from scratch.
\paragraph{Learning a Basis for Filters}
\begin{figure}[tbp]
\centering
\includegraphics[width=0.95\textwidth, page=3]{Figs/PDF/sparsification}
\caption[Learning a spatial basis for filters]{\textbf{Learning a spatial basis for filters.} Learning a linear combination of mostly small, heterogeneously-sized spatial filters, as proposed in \cref{lowrankfilters}. Note that all filters operate on all $c$ channels of the input \gls{featuremap}\index{feature map}.}
\label{fig:spatialbasis}
\end{figure}
Our approach is connected with that presented in \cref{lowrankfilters}, where we showed that replacing 3$\times$3$\times$c filters with linear combinations of filters with smaller spatial extent (\eg 1$\times$3$\times c$, 3$\times$1$\times c$ filters, see \cref{fig:spatialbasis}) could reduce the model size and computational complexity of state-of-the-art \glspl{cnn}\index{CNN}, while maintaining or even increasing accuracy. However, that work did not address the channel extent of the filters.
\section{Root Architectures}
\label{method}
In this section we present the main contribution of our work: the use of novel sparsely-connected architectures resembling tree roots --- to decrease computational complexity and model size compared to state-of-the-art \glspl{dnn}\index{DNN} for image recognition.
\paragraph{Learning a Basis for Filter Dependencies}
It is unlikely that every filter (or neuron\index{neuron}) in a deep neural network\index{neural network} needs to depend on the output of all the filters in the previous layer. In fact, reducing filter co-dependence in \glspl{dnn}\index{DNN} has been shown to benefit generalization. For example, \citet{Hinton2012} introduced {\em dropout} for regularization of \glspl{dnn}\index{DNN}. When training a network layer with dropout, a random subset of neurons\index{neuron} is excluded from both the forward and backward pass for each mini-batch. Furthermore, \citet{Cogswell2016} observe a correlation between the covariance of hidden unit activations and overfitting. To explicitly reduce the covariance of hidden activations, they train networks with a loss function, based on the covariance matrix of the activations in a hidden layer.
Instead of using a modified loss, regularization penalty, or randomized network connectivity during training to prevent co-adaption of features, we take a much more direct approach. We use filter groups\index{filter groups} (see \cref{fig:groupconfig}) to force the network to learn filters with only limited dependence on previous layers. Each of the filters in the filter groups\index{filter groups} is smaller in the channel extent, since it operates on only a subset of the channels of the input \gls{featuremap}\index{feature map}.
\begin{figure}[tbp]
\centering
\begin{subfigure}[b]{0.95\textwidth}
\centering
\includegraphics[width=\textwidth, page=4]{Figs/PDF/groupfig}
\caption{Convolution with $d$ filters of shape $h\times w\times c$.}
\label{fig:normalresnet}
\end{subfigure}\\
\begin{subfigure}[b]{0.95\textwidth}
\includegraphics[width=\textwidth, page=5]{Figs/PDF/groupfig}
\caption{Root-2 Module: Convolution with $d$ filters in $g = 2$ filter groups\index{filter groups}, of shape $h\times w\times c/2$.}
\label{fig:rootresnet2}
\end{subfigure}
\begin{subfigure}[b]{0.95\textwidth}
\includegraphics[width=\textwidth, page=6]{Figs/PDF/groupfig}
\caption{Root-4 Module: Convolution with $d$ filters in $g = 4$ filter groups\index{filter groups}, of shape $h\times w\times c/4$.}
\label{fig:rootresnet4}
\end{subfigure}
\caption[Root modules: learning a channel basis for filters]{\textbf{Root Modules.} Root modules (b), (c) compared to a typical set of convolutional layers (a) found in ResNet and other modern architectures. Grey blocks represent the \glspl{featuremap}\index{feature map} over which a layer's filters operate, while colored blocks represent the filters of each layer.
}
\label{fig:rootmodule}
\end{figure}
This reduced connectivity also reduces computational complexity and model size since the size of filters in filter groups\index{filter groups} are reduced drastically, as is evident in \cref{fig:rootmodule}. Unlike methods for increasing the efficiency of \glspl{dnn}\index{DNN} by approximating pre-trained existing networks (see \cref{previouswork}), our models are trained from random initialization using stochastic gradient descent. This means that our method can also speed up training and, since we are not merely approximating an existing model's weights, the accuracy of the existing model is not an upper bound on accuracy of the modified model.
\paragraph{Root Module}
The basic element of our network architecture, a \emph{root module}, is shown in \cref{fig:rootmodule}. A root module has a given number of filter groups\index{filter groups}, the more filter groups\index{filter groups}, the fewer the number of connections to the previous layer's outputs. Each spatial convolutional layer is followed by a low-dimensional embedding (1$\times$1 convolution). Like in \cref{lowrankfilters}, this configuration learns a linear combination of the basis filters (filter groups\index{filter groups}), implicitly representing a filter of full channel depth, but with limited filter dependence.
\section{Results}
Here we present image classification results obtained by replacing spatial convolutional layers within existing state-of-the-art network architectures with root modules (described in \cref{method}) .
\subsection{Improving \Glsfmttext{nin} on \Glsfmttext{cifar10}}
\Gls{nin}~\citep{Lin2013NiN} is a near state-of-the-art network for \gls{cifar10}~\citep{CIFAR10}. It is composed of 3 spatial (5$\times$5, 3$\times$3) convolutional layers with a large number of filters (192), interspersed with pairs of low-dimensional embedding (1$\times$1) layers. As a baseline, we replicated the standard NiN network architecture as described by \citet{Lin2013NiN} but used state-of-the-art training methods. We trained using random 32$\times$32 cropped and mirrored images from 4-pixel zero-padded mean-subtracted images, as used by \citet{goodfellow2013maxout, He2015}. We also used the initialization of \citet{He2015b} and batch normalization\index{batch normalization}~\citep{Ioffe2015}. With this configuration, \gls{zca} whitening was not required to reproduce validation accuracies obtained in~\citep{Lin2013NiN}. We also did not use dropout, having found it to have little effect, presumably due to our use of batch normalization\index{batch normalization}, as suggested by \citet{Ioffe2015}.
\begin{table}[tbp]
\caption[\Glsfmttext{nin} root architectures]{\textbf{\Glsfmttext{nin} Root Architectures}. Filter groups\index{filter groups} in each convolutional layer.}
\label{table:ninconfig}
\centering
%\resizebox{\textwidth}{!}{
\begin{tabular}{@{}lccccccccc@{}}
\toprule
Model & \multicolumn{3}{c}{conv1} & \multicolumn{3}{c}{conv2} & \multicolumn{3}{c}{conv3} \\
& \textit{\footnotesize a} & \textit{\footnotesize b} & \textit{\footnotesize c} & \textit{\footnotesize a} & \textit{\footnotesize b} & \textit{\footnotesize c} & \textit{\footnotesize a} & \textit{\footnotesize b} & \textit{\footnotesize c} \\
& \textit{\footnotesize5$\times$5} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize5$\times$5} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize3$\times$3} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize1$\times$1} \\
Orig. & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\
\midrule
root-2 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 & 1\\
root-4 & 1 & 1 & 1 & 4 & 1 & 1 & 2 & 1 & 1\\
root-8 & 1 & 1 & 1 & 8 & 1 & 1 & 4 & 1 & 1\\
root-16 & 1 & 1 & 1 & 16 & 1 & 1 & 8 & 1 & 1\\
\bottomrule
\end{tabular}
%}
\end{table}
\begin{table}[tp]
\caption[\Glsfmttext{nin} \gls{cifar10} results]{\textbf{\Glsfmttext{nin} \glsfmttext{cifar10} Results}}
\label{table:nincifarresults}
\centering
\pgfplotstableread[col sep=comma]{rootdata/nincifar.csv}\data
\pgfplotstableread[col sep=comma]{rootdata/nincifar_root_s.csv}\codata
\pgfplotstableread[col sep=comma]{rootdata/nincifar_tree_s.csv}\tdatatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_col_s.csv}\cdatatable
\pgfplotstablevertcat{\data}{\codata}
\pgfplotstablevertcat{\data}{\tdatatable}
\pgfplotstablevertcat{\data}{\cdatatable}
%\resizebox{\textwidth}{!}{
\pgfplotstabletypeset[
every head row/.style={before row=\toprule,after row=\midrule},
every last row/.style={after row=\bottomrule},
every row no 0/.style={after row=\midrule},
every nth row={4}{after row=\midrule},
fixed zerofill, % Fill numbers with zeros
columns={full name, ma, param, accuracy, cpu, gpu},
columns/full name/.style={
column name=Model,
string type
},
columns/ma/.style={
column name=\gls{flops} {\small $\times 10^{8}$},
preproc/expr={{##1/1e8}}
},
columns/param/.style={
column name=Param. {\small $\times 10^{5}$},
preproc/expr={{##1/1e5}}
},
columns/accuracy/.style={
column name=Accuracy,
precision=4
},
columns/gpu/.style={
column name=\gls{gpu} (ms),
precision=3
},
columns/cpu/.style={
column name=\gls{cpu} (ms),
precision=1
},
% column type/.add={@{}lrrrrrr@{}}{},
column type/.add={@{}lcccccc@{}}{},
highlight col max ={\data}{accuracy},
highlight col min ={\data}{param},
highlight col min ={\data}{ma},
col sep=comma]{\data}
%}
\end{table}
To assess the efficacy of our method, we replaced the spatial convolutional layers of the original \gls{nin} network with root modules (as described in \cref{method}). We preserved the original number of filters per layer but subdivided them into groups as shown in \cref{table:ninconfig}. We considered the first of the pair of existing 1$\times$1 layers to be part of our root modules.
We did not group filters in the first convolutional layer --- since it operates on the three-channel image space, it is of limited computational impact compared to other layers.
\begin{figure}[tbp]
\centering
\begin{subfigure}[b]{0.95\textwidth}
\pgfplotstableread[col sep=comma]{rootdata/nincifar.csv}\datatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_root_s.csv}\rdatatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_tree_s.csv}\tdatatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_col_s.csv}\cdatatable
\pgfplotsset{major grid style={dotted,red}}
\centering
\begin{tikzpicture}
%\tikzstyle{every node}=[font=\footnotesize]
\begin{axis}[
width=0.95\textwidth,
height=0.66\textwidth,
axis x line=bottom,
ylabel=Error,
xlabel=Model Parameters,
axis lines=left,
enlarge x limits=0.05,
enlarge y limits=0.05,
grid=major,
%xmin=0,
ytick={0.002,0.004,...,1.0},
%ymin=0.075,ymax=0.09,
xticklabel style={
/pgf/number format/fixed,
/pgf/number format/precision=1
},
yticklabel={\pgfmathparse{\tick*1}\pgfmathprintnumber{\pgfmathresult}\%},style={
/pgf/number format/fixed zerofill,
/pgf/number format/precision=1
},
legend style={at={(1,1.1)}, anchor=south east, column sep=0.2em, font=\small\sffamily\sansmath},
legend columns=4,
\setplotcyclecat{4},
every axis plot/.append style={fill},
]
\addplot+[mark=*,
%nodes near coords,
only marks,
point meta=explicit symbolic,
error bars/y dir=both,
error bars/y fixed=0.00131497782,
] table[meta=name,x=param,y expr={1 - \thisrow{accuracy} },]{\datatable};
\addplot+[mark=square*,
nodes near coords, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=param,y expr={1 - \thisrow{accuracy} },]{\rdatatable};
\addplot+[mark=triangle*,
nodes near coords, nodes near coords align = {below}, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=param,y expr={1 - \thisrow{accuracy} },]{\tdatatable};
\addplot+[mark=diamond*,
nodes near coords, nodes near coords align = {below}, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=param,y expr={1 - \thisrow{accuracy} },]{\cdatatable};
\legend{NiN, Root, Tree, Column}
\end{axis}
\end{tikzpicture}
%\caption{\textbf{Model Parameters \vs Error.}}
%\label{fig:nincifarparamconvonly}
\end{subfigure}
~
\begin{subfigure}[b]{0.95\textwidth}
\pgfplotstableread[col sep=comma]{rootdata/nincifar.csv}\datatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_root_s.csv}\rdatatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_tree_s.csv}\tdatatable
\pgfplotstableread[col sep=comma]{rootdata/nincifar_col_s.csv}\cdatatable
\pgfplotsset{major grid style={dotted,red}}
\centering
\begin{tikzpicture}
%\tikzstyle{every node}=[font=\footnotesize]
\begin{axis}[
width=0.95\textwidth,
height=0.66\textwidth,
axis x line=bottom,
ylabel=Error,
xlabel=\gls{flops} (Multiply-Add),
axis lines=left,
enlarge x limits=0.05,
enlarge y limits=0.05,
grid=major,
%xmin=0,
ytick={0.002,0.004,...,1.0},
%ymin=0.075,ymax=0.09,
xticklabel style={
/pgf/number format/fixed zerofill,
/pgf/number format/precision=1
},
yticklabel={\pgfmathparse{\tick*1}\pgfmathprintnumber{\pgfmathresult}\%},style={
/pgf/number format/fixed zerofill,
/pgf/number format/precision=1
},
\setplotcyclecat{4},
every axis plot/.append style={fill},
]
\addplot+[mark=*,
%nodes near coords,
only marks,
point meta=explicit symbolic,
error bars/y dir=both,
error bars/y fixed=0.00131497782,
] table[meta=name,x=ma,y expr={1 - \thisrow{accuracy} },]{\datatable};
\addplot+[mark=square*,
nodes near coords, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=ma,y expr={1 - \thisrow{accuracy} },]{\rdatatable};
\addplot+[mark=triangle*,
nodes near coords, nodes near coords align = {below}, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=ma,y expr={1 - \thisrow{accuracy} },]{\tdatatable};
\addplot+[mark=diamond*,
nodes near coords, nodes near coords align = {below}, only marks,
every node near coord/.append style={inner sep=4pt},
point meta=explicit symbolic,
] table[meta=name,x=ma,y expr={1 - \thisrow{accuracy} },]{\cdatatable};
\end{axis}
\end{tikzpicture}
%\caption{\textbf{\glsfmttext{flops} (Multiply-Add) \vs Error.}}
%\label{fig:nincifarmaconvonly}
\end{subfigure}
\caption[\Glsfmttext{nin} \glsfmttext{cifar10} results]{\textbf{\Glsfmttext{nin} \glsfmttext{cifar10} Results.} Spatial filters (3$\times$3, 5$\times$5) are grouped hierarchically. The best models are closest to the origin. For the standard network, the mean and standard deviation (error bars) are shown over 5 different random initializations.
%(left) Parameters \vs Error, (right) \gls{flops} \vs Error.
}\label{fig:nincifarplotsconvonly}
\end{figure}
Results are shown in \cref{table:nincifarresults} and \cref{fig:nincifarplotsconvonly} for various network architectures\footnote{Here (and subsequently unless stated otherwise) timings are per image for a forward pass computed on a large batch. Networks were implemented using Caffe (with \gls{cudnn} v2 and \gls{mkl}) and run on an Nvidia Titan Z \gls{gpu} and 2 10-core Intel Xeon E5-2680 v2 \gls{cpu}s.}. Compared to the baseline architecture, the root variants achieve a significant reduction in computation and model size without a significant reduction in accuracy. For example, the root-8 architecture gives equivalent accuracy with only 46\% of the \gls{flops}, 33\% of the model parameters of the original network, and approximately 37\% and 23\% faster \gls{cpu} and \gls{gpu} timings (see \cref{gpuexplanation} for an explanation of the \gls{gpu} timing disparity).
\newcommand{\covarlabels}[5]{%
\begin{tikzpicture}[anchor=south west]
\node [inner sep=0pt] (c)
{
#5
};
\ifx\covarwidth\undefined
\newlength{\covarwidth}
\newlength{\covarheight}
\fi
\settowidth{\covarwidth}{#5}
\settoheight{\covarheight}{#5}
\path[use as bounding box] (c.south west) rectangle (c.north east);
%\node [anchor=south west, xshift=-0.3em, yshift=-0.3em, rotate=45] at (c.north west) {\tiny 0};
\node [anchor=south east, xshift=\covarwidth, yshift=-0.2em] at (c.north west) {\tiny #4};
\node [anchor=south west, xshift=0.25em, yshift=-1.05\covarheight, rotate=90] at (c.north west) {\tiny #2};
\node [anchor=south, xshift=0.2\covarwidth, yshift=-0.2em] at (c.north west) {\scriptsize\texttt{#3}};
\node [anchor=south, xshift=0.2em, yshift=-0.2\covarheight, rotate=90] at (c.north west) {\scriptsize\texttt{#1}};
\end{tikzpicture}%
}
%\afterpage{
%\begin{landscape}
\begin{figure}[p]
\centering
\begin{subfigure}[b]{0.28\textheight}
\centering
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-conv8-corr}}
\caption{Standard}\label{fig:normalcovartestfull}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.28\textheight}
\centering
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-funnel2-convonly-conv8-corr}}
\caption{Root-2 (1 group)}\label{fig:root2corrfull}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.28\textheight}
\centering
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-funnel4-convonly-conv8-corr}}
\caption{Root-4 (2 groups)}\label{fig:root4corrfull}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.28\textheight}
\centering
\vspace*{0.6em}
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-funnel8-convonly-conv8-corr}}
\caption{Root-8 (4 groups)}\label{fig:root8corrfull}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.28\textheight}
\centering
\vspace*{0.6em}
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-funnel16-convonly-conv8-corr}}
\caption{Root-16 (8 groups)}\label{fig:root16corrfull}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.28\textheight}
\centering
\vspace*{0.6em}
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/msrc-cifar-nin-4pad-funnel32-convonly-conv8-corr}}
\caption{Root-32 (16 groups)}\label{fig:root32corrfull}
\end{subfigure}
\caption[Inter-layer filter covariance conv2c--conv3a]{\textbf{Inter-layer filter covariance conv2c--conv3a.} The block-diagonal sparsity learned by a root-unit is visible in the correlation of filters on layers \texttt{conv3a} and \texttt{conv2c} in the NiN network as observed on the \glsfmttext{cifar10} training data.}\label{fig:covar}
\end{figure}
%\end{landscape}}
\Cref{fig:covar} shows the inter-layer covariance between the adjacent filter layers \texttt{conv2c} and \texttt{conv3a} in the network architectures outlined in \cref{table:ninconfig} as evaluated on the CIFAR training set. The block-diagonalization enforced by the filter group\index{filter groups} structure (as illustrated in \cref{fig:groupconfig}) is visible, more so with larger number of filter groups\index{filter groups}. This shows that the network learns an organization of filters such that the sparsely distributed strong filter relations, visible in \cref{fig:normalcovartestfull} as brighter pixels, are grouped into a denser block-diagonal structure, leaving a visibly darker, low-correlated background.
\subsection{Inter-Layer Covariance}
\label{interlayercovar}
To show the relationships between filters between adjacent convolutional layers, as illustrated in \cref{fig:normalconv}, we calculate the covariance of the responses from two adjacent \glspl{featuremap}, the outputs of convolutional layers with $\gls{c}_1$ and $\gls{c}_2$ filters.
Let $\gls{X}_i = [\gls{vectorx}_{i,1}; \gls{vectorx}_{i,2}; \ldots ; \gls{vectorx}_{i,N}]$ be the matrix of $N$ samples $\gls{vectorx}_{i,n}$ from the $c_i$ dimensional \gls{featuremap} for layer $i$. We consider each pixel across the two \glspl{featuremap} to be a sample, and thus each vector $\gls{vectorx}_{i,n}$ is a single pixel filter response of dimension $c_i$. If two \glspl{featuremap} have different spatial dimensions, due to pooling, we up-sample the smaller \gls{featuremap} (with nearest neighbor interpolation) such that there are the same number of pixels (and thus samples) in each \gls{featuremap}.
Given two samples $\gls{X}_1, \gls{X}_2$ with zero mean (\ie mean subtracted) for two adjacent \glspl{featuremap}, we calculate the inter-layer covariance,
\begin{align}
\gls{covar}(\gls{X}_1, \gls{X}_2) &= \gls{expected}\left[\gls{X}_1\,\gls{X}_2^\textrm{T}\right],\\
&= \frac{1}{N-1} \gls{X}_1\,\gls{X}_2^\textrm{T}.
\end{align}
\begin{figure}[tbp]
\centering
\begin{subfigure}[b]{0.3\textheight}
\centering
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/ninroot32/train/layercovar_conv8}}
\caption{Non-whitened responses}
\label{fig:notwhitened}
\end{subfigure}
\hspace{1em}
\begin{subfigure}[b]{0.3\textheight}
\centering
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=\textwidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv8}}
\caption{Whitened responses}
\label{fig:whitened}
\end{subfigure}
\caption[Inter-layer covariance with/without whitened responses]{Covariance for between two layers in the root-32 \glsfmttext{nin} model with and without whitened responses.}
\label{fig:whitevsnot}
\end{figure}
While this shows the covariance between layers, it is conflated with the inherent covariances within $\gls{X}_1$ and $\gls{X}_2$ from the data (as shown in \cref{fig:notwhitened}). We can more clearly show the covariance between layers by first whitening (using \gls{zca}~\citep{CIFAR10}) the samples in $\gls{X}_1$ and $\gls{X}_2$. For a covariance matrix,
\begin{equation}
\gls{covar}(\gls{X}, \gls{X}) = \frac{1}{N-1} \gls{X}\gls{X}^\textrm{T},
\end{equation}
The \gls{zca} whitening transformation is given by,
\begin{equation}
W = \sqrt{N-1}\left(\gls{X}\gls{X}^\textrm{T}\right)^{-\frac{1}{2}}.
\end{equation}
Since the covariance matrix is symmetric, it is easily diagonalizable (\ie \gls{pca}),
\begin{align}
\gls{covar}(\gls{X}, \gls{X}) &= \frac{1}{N-1} PDP^\textrm{T},\\
\end{align}
where $P$ is a orthogonal matrix and $D$ a diagonal matrix. This diagonalization allows a simplified calculation of the whitening transformation (see the derivation in \citet[Appendix A]{CIFAR10}),
\begin{equation}
W = \sqrt{N-1}PD^{\circ-\frac{1}{2}}P^\textrm{T},
\end{equation}
where $D^{\circ-\frac{1}{2}}$ is simply $D$ with an element-wise power of $-\frac{1}{2}$.
The covariance between the whitened \gls{featuremap} responses is then,
\begin{equation}
\gls{covar}(W_1 \gls{X}_1, W_2 \gls{X}_2) = E\left[(W_1\gls{X}_1)\,(W_2\gls{X}_2)^\textrm{T}\right].
\end{equation}
\afterpage{%
\begin{landscape}
\begin{figure}[p]
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/train/corrcoef_conv9}}
\caption{\Glsfmttext{nin}}\label{fig:corrroot1}
\vspace{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/train/corrcoef_conv9}}
\caption{Root-4}\label{fig:corrroot4}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/train/corrcoef_conv9}}
\caption{Root-8}\label{fig:corrroot8}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/train/corrcoef_conv9}}
\caption{Root-32}\label{fig:corrroot32}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.77\paperheight}
\centering
\includegraphics[width=0.4\linewidth]{Figs/PDF/colorbar}
\end{subfigure}
\caption[Intra-layer filter correlation (train)]{\textbf{\Glsfmttext{nin} Intra-Layer Correlation (Train).} Absolute correlation of filters within each layer of a NiN model variant on the training data.}
\label{fig:nincorr}
\end{figure}
\end{landscape}
}%afterpage
\afterpage{
\begin{landscape}
\begin{figure}[p]
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/nin/test/corrcoef_conv9}}
\caption{\Glsfmttext{nin}}\label{fig:corrroot1test}
\vspace{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot4/test/corrcoef_conv9}}
\caption{Root-4}\label{fig:corrroot4test}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot8/test/corrcoef_conv9}}
\caption{Root-8}\label{fig:corrroot8test}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.75\paperheight}
\centering
\vspace{0.6em}
\covarlabels{conv1a}{192}{conv1a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv0}}
\hfill
\covarlabels{conv1b}{160}{conv1b}{160}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv1}}
\hfill
\covarlabels{conv1c}{96}{conv1c}{96}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv2}}
\hfill
\covarlabels{conv2a}{192}{conv2a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv4}}
\hfill
\covarlabels{conv2b}{192}{conv2b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv5}}
\hfill
\covarlabels{conv2c}{192}{conv2c}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv6}}
\hfill
\covarlabels{conv3a}{192}{conv3a}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv8}}
\hfill
\covarlabels{conv3b}{192}{conv3b}{192}{\includegraphics[width=0.11\linewidth]{Figs/PDF/ninroot32/test/corrcoef_conv9}}
\caption{Root-32}\label{fig:corrroot32test}
\vspace*{0.6em}
\end{subfigure}\\
\begin{subfigure}[c]{0.77\paperheight}
\centering
\includegraphics[width=0.4\linewidth]{Figs/PDF/colorbar}
\end{subfigure}
\caption[Intra-layer filter correlation (test)]{\textbf{\Glsfmttext{nin} Intra-Layer Correlation (Test).} Absolute correlation of filters within each layer of a NiN model variant on the test data.}
\label{fig:nincorrtest}
\end{figure}
\end{landscape}
}%afterpage
\afterpage{
\begin{landscape}
\begin{figure}[p]
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/nin/train/layercovarwhite_conv10}}
\caption{\Glsfmttext{nin}}
\vspace*{0.6em}
\label{fig:covaroot1}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot4/train/layercovarwhite_conv10}}
\caption{Root-4}
\vspace*{0.6em}
\label{fig:covarroot4}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot8/train/layercovarwhite_conv10}}
\caption{Root-8}
\vspace*{0.6em}
\label{fig:covarroot8}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot32/train/layercovarwhite_conv10}}
\caption{Root-32}
\label{fig:covarroot32}
\end{subfigure}
\caption[Inter-layer covariance all layers (train)]{\textbf{\Glsfmttext{nin} Inter-layer Covariance (Train).} The inter-layer covariance for all layers in variants of the NiN network}
\label{fig:suppcovariances}
\end{figure}
\end{landscape}
}%afterpage
\afterpage{
\begin{landscape}
\begin{figure}[p]
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/nin/test/layercovarwhite_conv10}}
\caption{\Glsfmttext{nin}}
\vspace*{0.6em}
\label{fig:covaroot1test}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot4/test/layercovarwhite_conv10}}
\caption{Root-4}
\vspace*{0.6em}
\label{fig:covarroot4test}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot8/test/layercovarwhite_conv10}}
\caption{Root-8}
\vspace*{0.6em}
\label{fig:covarroot8test}
\end{subfigure}
\begin{subfigure}[c]{0.75\paperheight}
%\centering
\covarlabels{conv1a}{192}{conv1b}{160}{\includegraphics[width=0.1\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv1}}
\hfill
\covarlabels{conv1b}{160}{conv1c}{96}{\includegraphics[width=0.05\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv2}}
\hfill
\covarlabels{conv1c}{96}{conv2a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv4}}
\hfill
\covarlabels{conv2a}{192}{conv2b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv5}}
\hfill
\covarlabels{conv2b}{192}{conv2c}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv6}}
\hfill
\covarlabels{conv2c}{192}{conv3a}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv8}}
\hfill
\covarlabels{conv3a}{192}{conv3b}{192}{\includegraphics[width=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv9}}
\hfill
\covarlabels{}{192}{}{10}{\includegraphics[height=0.12\linewidth]{Figs/PDF/ninroot32/test/layercovarwhite_conv10}}
\caption{Root-32}
\label{fig:covarroot32test}
\end{subfigure}
\caption[Inter-layer covariance all layers (test)]{\textbf{\Glsfmttext{nin} Inter-layer Covariance (Test).} The inter-layer covariance for all layers in variants of the NiN network}
\label{fig:suppcovariancestest}
\end{figure}
\end{landscape}
}%afterpage
\Cref{fig:nincorr} shows the per-layer (intra-layer) filter correlation. This shows the correlation of filters is more structured in root-networks, filters are learned to be linearly combined into useful filters by the root module, and thus filters are often grouped together with other filters with which they correlate strongly.
\Cref{fig:covar} shows the inter-layer filter covariances between layers \texttt{conv3a} and \texttt{conv2c}. \Cref{fig:suppcovariances} shows the full set of inter-layer covariances between all convolutional layers in the NiN models. Block-diagonal sparsity is visible on the layers with filter groups\index{filter groups}, \texttt{conv2a} and \texttt{conv3a}. This block-diagonal is shown for all variants in more detail in \cref{fig:suppcovariances}.
\subsection{Grouping Degree with Network Depth}
\afterpage{
\begin{landscape}
\begin{figure}[p]
\begin{subfigure}[b]{0.98\linewidth}
%\centering
\begin{tikzpicture}[ampersand replacement=\&]
\begin{scope}[]
\matrix[column sep=0em]{
\node (1a) {
\raisebox{-0.5\height}{\includegraphics[height=0.07\linewidth, page=15]{groupfig}}
};\&
\node (1b) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (1c) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (2a) {
\raisebox{-0.5\height}{\includegraphics[height=0.08\linewidth, page=16]{groupfig}}
};\&
\node (2b) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (2c) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (3a) {
\raisebox{-0.5\height}{\includegraphics[height=0.08\linewidth, page=16]{groupfig}}
};\&
\node (3b) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (3c) {
\raisebox{-0.5\height}{\includegraphics[height=0.1\linewidth, page=17]{groupfig}}
};\&
\node (7) {
{\large $\cdots$}
};\\
\draw node{{\footnotesize \textit{image}}/{\footnotesize \textit{conv1a}}};\&
\draw node{\footnotesize \textit{conv1b}};\&
\draw node{\footnotesize \textit{conv1c}};\&
\draw node{\footnotesize \textit{conv2a}};\&
\draw node{\footnotesize \textit{conv2b}};\&
\draw node{\footnotesize \textit{conv2c}};\&
\draw node{\footnotesize \textit{conv3a}};\&
\draw node{\footnotesize \textit{conv3b}};\&
\draw node{\footnotesize \textit{conv3c}};\\
};
\end{scope}
\end{tikzpicture}
\caption{Standard}
\label{fig:standardtopology}
\end{subfigure}\\
\begin{subfigure}[b]{0.98\linewidth}
%\centering
\begin{tikzpicture}[ampersand replacement=\&]
\begin{scope}[]
\matrix[column sep=0em]{
\node (1a) {
\includegraphics[height=0.07\linewidth, page=15]{groupfig}
};\&
\node (1b) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (1c) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (2a) {
\includegraphics[height=0.13\linewidth, page=19]{groupfig}
};\&
\node (2b) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (2c) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (3a) {
\includegraphics[height=0.08\linewidth, page=18]{groupfig}
};\&
\node (3b) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (3c) {
\includegraphics[height=0.1\linewidth, page=17]{groupfig}
};\&
\node (4) {
{\large $\cdots$}
};\\
};
\draw[decorate,decoration={brace,mirror},](2a.south west) -- node[below=3pt] {\small root-4 module} ++(3.5, 0);
\draw[decorate,decoration={brace,mirror},yshift=-2em](3a.south west) + (0, -0.5) -- node[below=3pt] {\small root-2 module} ++(3.5, -0.5);
\end{scope}
\end{tikzpicture}
\caption{Root-4 Architecture}
\label{fig:root4topology}
\end{subfigure}
\caption[\Glsfmttext{nin} standard \vs root architecture]{\textbf{\Glsfmttext{nin} Root Architecture.} The Root-4 architecture as compared to the original architecture for all the convolutional layers. Colored blocks represent the filters of each layer. Here we don't show the intermediate \glspl{featuremap}\index{feature map} over which a layer's filters operate, or the final fully-connected layer, out of space considerations (see \cref{fig:networkinnetwork,fig:rootmodule}). The decreasing degree of grouping in successive root modules means that our network architectures somewhat resemble tree roots, hence the name root.
}\label{fig:networktopology}
\end{figure}
\end{landscape}
}
An interesting question concerns how the degree of grouping in our root modules should be varied as a function of depth in the network. For the \gls{nin}-like architectures described earlier, we might consider having the degree of grouping:
\begin{enumerate*}[label= (\textbf{\roman*})]
\item decrease with depth after the first convolutional layer, \eg 1--8--4 (`root');
\item remain constant with depth after the first convolutional layer, \eg 1--4--4 (`column'); or
\item increase with depth, \eg 1--4--8 (`tree').
\end{enumerate*}
To determine which approach is best, we created variants of the NiN architecture with different degrees of grouping per layer. Results are shown in \cref{fig:nincifarplotsconvonly}. The results show that the so-called root topology (illustrated in \cref{fig:networktopology}) gives the best performance, providing the smallest reduction in accuracy for a given reduction in model size and computational complexity. Similar experiments with deeper network architectures have delivered similar results and so we have reported results for root topologies. This aligns with the intuition of \glspl{dnn}\index{DNN} for image recognition subsuming the deformable parts model. If we assume that filter responses identify parts (or more elemental features), then there should be more filter dependence with depth, as more parts (filter responses) are assembled into complex concepts.
\subsection{Improving Residual Networks on \Glsfmttext{ilsvrc}}
Residual networks (\gls{resnet}\index{ResNet}s)~\citep{He2015} are the state-of-the-art network for \gls{ilsvrc}\@. \Glspl{resnet}\index{ResNet} are more computationally efficient than the VGG architecture~\citep{Simonyan2014verydeep} on which they are based, due to the use of low-dimensional embeddings~\citep{Lin2013NiN}. ResNets are also more accurate and quicker to converge due to the use of identity mappings.
\subsubsection{ResNet 50}
\label{resnet50results}
As a baseline, we used the \gls{resnet}\index{ResNet} 50 model~\citep{He2015} (the largest residual network model to fit onto 8 \gls{gpu}s with Caffe). \gls{resnet}\index{ResNet} 50 has 50 convolutional layers, of which one-third are spatial convolutions (non-1$\times$1). We did not use any training augmentation aside from random cropping and mirroring.
For training, we used the initialization scheme described by~\citep{He2015b} modified for compound layers, as presented in \cref{initialization}, and batch normalization\index{batch normalization}~\citep{Ioffe2015}.
\begin{table}[tp]
\caption[ResNet 50 root architectures]{\textbf{ResNet 50.} Filter groups\index{filter groups} in each conv.\ layer.}
\label{table:resnet50config}
\centering
\begin{tabular}{@{}lcccccccccccc@{}}
\toprule
Model & conv1 & \multicolumn{2}{c}{res2\{a--c\}} & \multicolumn{2}{c}{res3\{a--d\}} & \multicolumn{2}{c}{res4\{a--f\}} & \multicolumn{2}{c}{res5\{a--c\}} \\
& \textit{\footnotesize7$\times$7} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize3$\times$3} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize3$\times$3} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize3$\times$3} & \textit{\footnotesize1$\times$1} & \textit{\footnotesize3$\times$3} \\
Orig. & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\midrule