-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathvisualize.py
262 lines (232 loc) · 8.83 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# ------------------------------------------------------------------------------
# Copyright (c) Southeast University. Licensed under the MIT License.
# Written by Sen Yang (yangsenius@seu.edu.cn)
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os.path as osp
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import matplotlib
import math
import numpy as np
import cv2
keypoint_name = {
0: "nose",
1: "eye(l)",
2: "eye(r)",
3: "ear(l)",
4: "ear(r)",
5: "sho.(l)",
6: "sho.(r)",
7: "elb.(l)",
8: "elb.(r)",
9: "wri.(l)",
10: "wri.(r)",
11: "hip(l)",
12: "hip(r)",
13: "kne.(l)",
14: "kne.(r)",
15: "ank.(l)",
16: "ank.(r)",
17: "random",
18: "random",
}
class plt_config:
def __init__(self, dataset_name):
assert dataset_name == "coco", "{} dataset is not supported".format(
dataset_name
)
self.n_kpt = 17
# edge , color
self.EDGES = [
([15, 13], [255, 0, 0]), # l_ankle -> l_knee
([13, 11], [155, 85, 0]), # l_knee -> l_hip
([11, 5], [155, 85, 0]), # l_hip -> l_shoulder
([12, 14], [0, 0, 255]), # r_hip -> r_knee
([14, 16], [17, 25, 10]), # r_knee -> r_ankle
([12, 6], [0, 0, 255]), # r_hip -> r_shoulder
([3, 1], [0, 255, 0]), # l_ear -> l_eye
([1, 2], [0, 255, 5]), # l_eye -> r_eye
([1, 0], [0, 255, 170]), # l_eye -> nose
([0, 2], [0, 255, 25]), # nose -> r_eye
([2, 4], [0, 17, 255]), # r_eye -> r_ear
([9, 7], [0, 220, 0]), # l_wrist -> l_elbow
([7, 5], [0, 220, 0]), # l_elbow -> l_shoulder
([5, 6], [125, 125, 155]), # l_shoulder -> r_shoulder
([6, 8], [25, 0, 55]), # r_shoulder -> r_elbow
([8, 10], [25, 0, 255]),
] # r_elbow -> r_wrist
def plot_poses(
img, skeletons, config=plt_config("coco"), save_path=None, dataset_name="coco"
):
cmap = matplotlib.cm.get_cmap("hsv")
canvas = img.copy()
n_kpt = config.n_kpt
for i in range(n_kpt):
rgba = np.array(cmap(1 - i / n_kpt - 1.0 / n_kpt * 2))
rgba[0:3] *= 255
for j in range(len(skeletons)):
if len(skeletons[j][i]) > 2 and skeletons[j][i, 2] > 0:
cv2.circle(
canvas,
tuple(skeletons[j][i, 0:2].astype("int32")),
3,
(255, 255, 255),
thickness=-1,
)
stickwidth = 2
for i in range(len(config.EDGES)):
for j in range(len(skeletons)):
edge = config.EDGES[i][0]
color = config.EDGES[i][1]
if len(skeletons[j][edge[0]]) > 2:
if skeletons[j][edge[0], 2] == 0 or skeletons[j][edge[1], 2] == 0:
continue
cur_canvas = canvas.copy()
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly(
(int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
cv2.fillConvexPoly(cur_canvas, polygon, color)
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas
def update_config(cfg, yamlfilename):
cfg.defrost()
cfg.merge_from_file(yamlfilename)
cfg.TEST.MODEL_FILE = osp.join(cfg.DATA_DIR, cfg.TEST.MODEL_FILE)
cfg.freeze()
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
def inspect_atten_map_by_locations(
image,
model,
query_locations,
model_name="transposer",
mode="dependency",
threshold=None,
device=torch.device("cuda"),
kpt_color="white",
img_name="image",
save_img=False,
):
r"""
Visualize the attention maps in all of attention layers
Args:
image: shape -> [3, h, w]; type -> torch.Tensor;
model: a pretrained model; type -> torch.nn.Module
query_locations: shape -> [K,2]: type -> np.array
mode: 'dependency' or 'affect'
threshold: Default: None. If using it, recommend to be 0.01
"""
assert mode in ["dependency", "affect"]
inputs = torch.cat([image.to(device)]).unsqueeze(0)
features = []
global_enc_atten_maps = []
std = torch.tensor([0.229, 0.224, 0.225]).unsqueeze(-1).unsqueeze(-1)
mean = torch.tensor([0.485, 0.456, 0.406]).unsqueeze(-1).unsqueeze(-1)
img_vis = image * std + mean
img_vis = img_vis.permute(1, 2, 0).detach().cpu().numpy()
img_vis_kpts = img_vis.copy()
img_vis_kpts = plot_poses(img_vis_kpts, [query_locations])
feature_hooks = [
model.reduce.register_forward_hook(
lambda self, input, output1: features.append(output1)
)
]
atten_maps_hooks = [
model.global_encoder.layers[i].self_attn.register_forward_hook(
lambda self, input, output: global_enc_atten_maps.append(output[1])
)
for i in range(len(model.global_encoder.layers))
]
with torch.no_grad():
outputs = model(inputs)
del outputs
for h in feature_hooks:
h.remove()
for h in atten_maps_hooks:
h.remove()
shape = features[0].shape[-2:]
enc_atten_maps_hwhw = []
for atten_map in global_enc_atten_maps:
atten_map = atten_map.reshape(shape + shape)
enc_atten_maps_hwhw.append(atten_map)
attn_layers_num = len(enc_atten_maps_hwhw)
down_rate = img_vis_kpts.shape[0] // shape[0]
# query locations are at the coordinate frame of original image
attn_map_pos = query_locations / down_rate
# random pos
x1 = img_vis_kpts.shape[1] * torch.rand(1)
y1 = img_vis_kpts.shape[0] * torch.rand(1)
x2 = img_vis_kpts.shape[1] * torch.rand(1)
y2 = img_vis_kpts.shape[0] * torch.rand(1)
random_pt_1 = [x1 / down_rate, y1 / down_rate]
random_pt_2 = [x2 / down_rate, y2 / down_rate]
attn_map_pos = attn_map_pos.tolist()
attn_map_pos.append(random_pt_1)
attn_map_pos.append(random_pt_2)
fig, axs = plt.subplots(attn_layers_num, 20, figsize=(30, 8),)
fig.subplots_adjust(
bottom=0.07, right=0.97, top=0.98, left=0.03, wspace=0.00008, hspace=0.02,
)
for l in range(attn_layers_num):
axs[l][0].imshow(img_vis_kpts)
axs[l][0].set_ylabel("Enc.Att.\nLayer {}".format(l), fontsize=25)
axs[l][0].set_xticks([])
axs[l][0].set_yticks([])
for id, attn_map in enumerate(enc_atten_maps_hwhw):
for p_id, p in enumerate(attn_map_pos):
if mode == "dependency":
attention_map_for_this_point = F.interpolate(
attn_map[None, None, int(p[1]), int(p[0]), :, :],
scale_factor=down_rate,
mode="bilinear",
)[0][0]
else:
attention_map_for_this_point = F.interpolate(
attn_map[None, None, :, :, int(p[1]), int(p[0])],
scale_factor=down_rate,
mode="bilinear",
)[0][0]
attention_map_for_this_point = (
attention_map_for_this_point.squeeze().detach().cpu().numpy()
)
x, y = p[0] * down_rate, p[1] * down_rate
img_vis_kpts_new = img_vis.copy()
axs[id][p_id + 1].imshow(img_vis_kpts_new)
if threshold is not None:
mask = attention_map_for_this_point <= threshold
attention_map_for_this_point[mask] = 0
im = axs[id][p_id + 1].imshow(
attention_map_for_this_point, cmap="nipy_spectral", alpha=0.79
)
else:
im = axs[id][p_id + 1].imshow(
attention_map_for_this_point, cmap="nipy_spectral", alpha=0.79
)
axs[id][p_id + 1].scatter(x=x, y=y, s=60, marker="*", c=kpt_color)
axs[id][p_id + 1].set_xticks([])
axs[id][p_id + 1].set_yticks([])
if id == attn_layers_num - 1:
axs[id][p_id + 1].set_xlabel(
"{}".format(keypoint_name[p_id]), fontsize=25,
)
cax = plt.axes([0.975, 0.08, 0.005, 0.90])
cb = fig.colorbar(
im, cax=cax, ax=axs, orientation="vertical", fraction=0.05, aspect=50
)
cb.set_ticks([0.0, 0.5, 1])
cb.ax.tick_params(labelsize=20)
if save_img:
plt.savefig("attention_map_{}_{}_{}.jpg".format(img_name, mode, model_name))
plt.show()