-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator.hpp
404 lines (394 loc) · 15.4 KB
/
evaluator.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#ifndef EVALUATOR_H
#define EVALUATOR_H
#ifndef ALL_IN_ONE
#include <vector>
#include <cstdint>
#include <cmath>
#include <bitset>
#include <array>
#include <algorithm>
#include <functional>
#include <utility>
#include <initializer_list>
#include <iomanip>
#endif
#include "bitmap.hpp"
#include "board.hpp"
#include "utility.hpp"
namespace yrq {
class evaluator {
public:
using distance_matrix = uint8_t[8][8]; //距离矩阵
using distance_matrix_group = std::array<distance_matrix, 4>; //距离矩阵组
using player = std::array<board::piece, 4>; //玩家:包含四个棋子
using piece = board::piece;
private:
board bd; //位棋盘
std::array<distance_matrix_group, 2> dm_1; //玩家1,2的queen距离矩阵组
std::array<distance_matrix_group, 2> dm_2; //玩家1,2的king距离矩阵组
std::array<distance_matrix, 2> merged_dm_1; //玩家1,2的queen距离矩阵组合并后的最小queen距离矩阵
std::array<distance_matrix, 2> merged_dm_2; //玩家1,2的king距离矩阵组合并后的最小king距离矩阵
public:
std::array<player, 2> players;
double w = 0;
evaluator(board _bd) noexcept :bd(_bd) {
for (auto& dmg : dm_1)
for (auto& dm : dmg)
memset(dm, (uint8_t)(-1), 64);
for (auto& dmg : dm_2)
for (auto& dm : dmg)
memset(dm, (uint8_t)(-1), 64);
memset(merged_dm_1[0], (uint8_t)(-1), 64);
memset(merged_dm_1[1], (uint8_t)(-1), 64);
memset(merged_dm_2[0], (uint8_t)(-1), 64);
memset(merged_dm_2[1], (uint8_t)(-1), 64);
}
evaluator() noexcept {
for (auto& dmg : dm_1)
for (auto& dm : dmg)
memset(dm, (uint8_t)(-1), 64);
for (auto& dmg : dm_2)
for (auto& dm : dmg)
memset(dm, (uint8_t)(-1), 64);
memset(merged_dm_1[0], (uint8_t)(-1), 64);
memset(merged_dm_1[1], (uint8_t)(-1), 64);
memset(merged_dm_2[0], (uint8_t)(-1), 64);
memset(merged_dm_2[1], (uint8_t)(-1), 64);
};
~evaluator() noexcept {};
double evaluate() {
double r = 0;
_generate_distance_matrix();
r += _territory_ingredient();
r += _mobility_ingredient();
r += _guard_ingredient();
r += _distribution_ingredient();
#ifdef _DEBUG
emit_key_value("EVALUATE RESULT", r, true);
#endif
return r;
}
private:
//输出距离矩阵
void _debug_printf_distance_matrix(distance_matrix dm) {
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 8; ++j)
std::cout << std::setw(4) << (unsigned)dm[j][i];
std::cout << std::endl;
}
}
//根据双方最小距离取值的delta函数
double _territory_determine_delta(uint8_t m, uint8_t n) {
if (m == 255 && n == 255) return 0;
if (m == n) return 0.125;
if (m < n) return 1;
return -1;
}
//生成之后所需的距离矩阵
void _generate_distance_matrix() {
int idx = 0;
for (auto& m : players[0])
_single_queen_min_moves(m, dm_1[0][idx++]);
idx = 0;
for (auto& m : players[1])
_single_queen_min_moves(m, dm_1[1][idx++]);
idx = 0;
for (auto& m : players[0])
_single_king_min_moves(m, dm_2[0][idx++]);
idx = 0;
for (auto& m : players[1])
_single_king_min_moves(m, dm_2[1][idx++]);
_merge_distance_matrix(merged_dm_1[0], dm_1[0]);
_merge_distance_matrix(merged_dm_1[1], dm_1[1]);
_merge_distance_matrix(merged_dm_2[0], dm_2[0]);
_merge_distance_matrix(merged_dm_2[1], dm_2[1]);
}
//生成领地(territory)参量
double _territory_ingredient() {
auto [t1, c1, w] = _t1_c1_w();
auto [t2, c2] = _t2_c2();
// f(t1,w) = [ 0.75 * 1.1 ^ (-w) + 0.25 ] * t1
auto f_w_t1 = [=](double v) { return (0.75 * std::pow(1.1, -w) + 0.25) * v; };
// f(t2,w) = [ 0.08 * sqrt( max { w-1 , 0 } ) ] * t2
auto f_w_t2 = [=](double v) { return (0.08 * std::sqrt(w - 1 > 0 ? w - 1 : 0))* v; };
// f(c1,w) = [ 1 - f_t1(w) - f_t2(w) ] * [ 0.6 * 1.1 ^ (-w) + 0.4 ] * c1
auto f_w_c1 = [=](double v) { return (1 - 0.75 * std::pow(1.1, -w) - 0.25 - 0.08 * std::sqrt(w - 1 > 0 ? w - 1 : 0))* (0.4 + 0.6 * std::pow(1.1, -w))* v; };
// f(c2,w) = [ 1 - f_t1(w) - f_t2(w) ] * [ 0.6 - 0.6 * 1.1 ^ (-w) ] * c2
auto f_w_c2 = [=](double v) { return (1 - 0.75 * std::pow(1.1, -w) - 0.25 - 0.08 * std::sqrt(w - 1 > 0 ? w - 1 : 0))* (1 - (0.4 + 0.6 * std::pow(1.1, -w)))* v; };
#ifdef _DEBUG
emit_key_value("t1", t1);
emit_key_value("c1", c1);
emit_key_value("t2", t2);
emit_key_value("c2", c2);
emit_key_value("w", w, true);
emit_key_value("f(t1,w)", f_w_t1(t1));
emit_key_value("f(c1,w)", f_w_c1(c1));
emit_key_value("f(t2,w)", f_w_t2(t2));
emit_key_value("f(c2,w)", f_w_c2(c2));
emit_key_value("t", f_w_t1(t1) + f_w_c1(c1) + f_w_t2(t2) + f_w_c2(c2), true);
#endif
return f_w_t1(t1) + f_w_c1(c1) + f_w_t2(t2) + f_w_c2(c2);
}
//将距离矩阵组合并为最小距离矩阵
void _merge_distance_matrix(distance_matrix& out, const distance_matrix_group& in) {
for (const auto& mat : in)
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j)
out[i][j] = std::min(mat[i][j], out[i][j]);
}
//两两计算所有amazon之间几何距离,取得棋子整体分布特征
double _amazons_distribution(const player& p) {
double sum = 0;
for (const auto& amazon1 : p)
for (const auto& amazon2 : p)
sum += std::sqrt(std::pow(std::abs((double)amazon1.x() - amazon2.x()), 2) + std::pow(std::abs((double)amazon1.y() - amazon2.y()), 2));
return std::sqrt(sum / 10.0) - 1.5;
}
//生成分布(distribution)参量
double _distribution_ingredient() {
double d0 = _amazons_distribution(players[0]);
double d1 = _amazons_distribution(players[1]);
#ifdef _DEBUG
emit_key_value("d", w / 20.0 * (d0 - d1), true);
#endif
return w / 20.0 * (d0 - d1);
}
//计算t1,c1和局势进度特征值w
std::tuple<double, double, double> _t1_c1_w() {
double t1 = 0, c1 = 0, w = 0;
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) {
if (bd.is_obstacle(i, j)) continue;
t1 += _territory_determine_delta(merged_dm_1[0][i][j], merged_dm_1[1][i][j]);
c1 += std::pow(2.0, -merged_dm_1[0][i][j]) - std::pow(2.0, -merged_dm_1[1][i][j]);
w += std::pow(2.0, -std::abs(merged_dm_1[0][i][j] - merged_dm_1[1][i][j]));
}
c1 *= 2;
this->w = w;
return std::make_tuple(t1, c1, w);
}
//计算t2,c2
std::tuple<double, double> _t2_c2() {
double t2 = 0, c2 = 0;
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) {
if (bd.is_obstacle(i, j)) continue;
t2 += _territory_determine_delta(merged_dm_2[0][i][j], merged_dm_2[1][i][j]);
c2 += std::min(1.0, std::max(-1.0, (double)(merged_dm_2[1][i][j] - merged_dm_2[0][i][j]) / 6.0));
}
return std::make_tuple(t2, c2);
}
//计算相邻的空闲方格数量
size_t _empty_neighbor_num(uint8_t x, uint8_t y) {
size_t sum = 0;
if (x + 1 < 8 && !bd.is_obstacle(x + 1, y)) ++sum;
if (x - 1 >= 0 && !bd.is_obstacle(x - 1, y)) ++sum;
if (y + 1 < 8 && !bd.is_obstacle(x, y + 1)) ++sum;
if (y - 1 >= 0 && !bd.is_obstacle(x, y - 1)) ++sum;
if (x + 1 < 8 && y + 1 < 8 && !bd.is_obstacle(x + 1, y + 1)) ++sum;
if (x - 1 >= 0 && y + 1 < 8 && !bd.is_obstacle(x - 1, y + 1)) ++sum;
if (x + 1 < 8 && y - 1 >= 0 && !bd.is_obstacle(x + 1, y - 1)) ++sum;
if (x - 1 >= 0 && y - 1 >= 0 && !bd.is_obstacle(x - 1, y - 1)) ++sum;
return sum;
}
//计算单个amazon的queen距离矩阵
void _single_queen_min_moves(piece from, distance_matrix& distance) {
std::vector<piece> open;
std::bitset<64> closed;
open.push_back(from);
distance[from.x()][from.y()] = 0;
while (!open.empty()) {
piece tmp = open.back();
uint8_t x = tmp.x();
uint8_t y = tmp.y();
uint8_t w = distance[x][y];
open.pop_back();
closed[tmp.eigen_value()] = 1;
for (int i = x + 1; i < 8; ++i) {
if (bd.is_obstacle(i, y)) break;
if (!closed[piece::eigen_value(i, y)]) {
open.emplace_back(i, y);
distance[i][y] = std::min(distance[i][y], (uint8_t)(w + 1));
}
}
for (int i = x - 1; i >= 0; --i) {
if (bd.is_obstacle(i, y)) break;
if (!closed[piece::eigen_value(i, y)]) {
open.emplace_back(i, y);
distance[i][y] = std::min(distance[i][y], (uint8_t)(w + 1));
}
}
for (int i = y + 1; i < 8; ++i) {
if (bd.is_obstacle(x, i)) break;
if (!closed[piece::eigen_value(x, i)]) {
open.emplace_back(x, i);
distance[x][i] = std::min(distance[x][i], (uint8_t)(w + 1));
}
}
for (int i = y - 1; i >= 0; --i) {
if (bd.is_obstacle(x, i)) break;
if (!closed[piece::eigen_value(x, i)]) {
open.emplace_back(x, i);
distance[x][i] = std::min(distance[x][i], (uint8_t)(w + 1));
}
}
for (int i = x + 1, j = y + 1; i < 8 && j < 8; ++i, ++j) {
if (bd.is_obstacle(i, j)) break;
if (!closed[piece::eigen_value(i, j)]) {
open.emplace_back(i, j);
distance[i][j] = std::min(distance[i][j], (uint8_t)(w + 1));
}
}
for (int i = x - 1, j = y + 1; i >= 0 && j < 8; --i, ++j) {
if (bd.is_obstacle(i, j)) break;
if (!closed[piece::eigen_value(i, j)]) {
open.emplace_back(i, j);
distance[i][j] = std::min(distance[i][j], (uint8_t)(w + 1));
}
}
for (int i = x + 1, j = y - 1; i < 8 && j >= 0; ++i, --j) {
if (bd.is_obstacle(i, j)) break;
if (!closed[piece::eigen_value(i, j)]) {
open.emplace_back(i, j);
distance[i][j] = std::min(distance[i][j], (uint8_t)(w + 1));
}
}
for (int i = x - 1, j = y - 1; i >= 0 && j >= 0; --i, --j) {
if (bd.is_obstacle(i, j)) break;
if (!closed[piece::eigen_value(i, j)]) {
open.emplace_back(i, j);
distance[i][j] = std::min(distance[i][j], (uint8_t)(w + 1));
}
}
distance[from.x()][from.y()] = -1;
}
}
//计算单个amazon的king距离矩阵
void _single_king_min_moves(piece from, distance_matrix& distance) {
std::vector<piece> open;
std::bitset<64> closed;
open.push_back(from);
distance[from.x()][from.y()] = 0;
while (!open.empty()) {
piece tmp = open.back();
uint8_t x = tmp.x();
uint8_t y = tmp.y();
uint8_t w = distance[x][y];
open.pop_back();
closed[tmp.eigen_value()] = 1;
if (x + 1 < 8) if (!bd.is_obstacle(x + 1, y) && !closed[piece::eigen_value(x + 1, y)]) {
open.emplace_back(x + 1, y);
distance[x + 1][y] = std::min(distance[x + 1][y], (uint8_t)(w + 1));
}
if (x - 1 >= 0) if (!bd.is_obstacle(x - 1, y) && !closed[piece::eigen_value(x - 1, y)]) {
open.emplace_back(x - 1, y);
distance[x - 1][y] = std::min(distance[x - 1][y], (uint8_t)(w + 1));
}
if (y + 1 < 8) if (!bd.is_obstacle(x, y + 1) && !closed[piece::eigen_value(x, y + 1)]) {
open.emplace_back(x, y + 1);
distance[x][y + 1] = std::min(distance[x][y + 1], (uint8_t)(w + 1));
}
if (y - 1 >= 0) if (!bd.is_obstacle(x, y - 1) && !closed[piece::eigen_value(x, y - 1)]) {
open.emplace_back(x, y - 1);
distance[x][y - 1] = std::min(distance[x][y - 1], (uint8_t)(w + 1));
}
if (x + 1 < 8 && y + 1 < 8) if (!bd.is_obstacle(x + 1, y + 1) && !closed[piece::eigen_value(x + 1, y + 1)]) {
open.emplace_back(x + 1, y + 1);
distance[x + 1][y + 1] = std::min(distance[x + 1][y + 1], (uint8_t)(w + 1));
}
if (x - 1 >= 0 && y + 1 < 8) if (!bd.is_obstacle(x - 1, y + 1) && !closed[piece::eigen_value(x - 1, y + 1)]) {
open.emplace_back(x - 1, y + 1);
distance[x - 1][y + 1] = std::min(distance[x - 1][y + 1], (uint8_t)(w + 1));
}
if (x + 1 < 8 && y - 1 >= 0) if (!bd.is_obstacle(x + 1, y - 1) && !closed[piece::eigen_value(x + 1, y - 1)]) {
open.emplace_back(x + 1, y - 1);
distance[x + 1][y - 1] = std::min(distance[x + 1][y - 1], (uint8_t)(w + 1));
}
if (x - 1 >= 0 && y - 1 >= 0) if (!bd.is_obstacle(x - 1, y - 1) && !closed[piece::eigen_value(x - 1, y - 1)]) {
open.emplace_back(x - 1, y - 1);
distance[x - 1][y - 1] = std::min(distance[x - 1][y - 1], (uint8_t)(w + 1));
}
distance[from.x()][from.y()] = -1;
}
}
//计算特定棋子的移动力
double _amazon_mobility(size_t player_idx, size_t amazon_idx) {
double a = 0.0;
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j)
if (merged_dm_1[1 - player_idx][i][j] != 255 && dm_1[player_idx][amazon_idx][i][j] <= 1)
a += std::pow(2.0, -dm_2[player_idx][amazon_idx][i][j]) * _empty_neighbor_num(i, j);
return a;
}
//生成移动力(mobility)参量
double _mobility_ingredient() {
double m1 = 0, m2 = 0;
auto f_w_m1 = [this](double m) {return 2 * (w < 10 ? 10 : w) * std::pow(1.2, -m); };
auto f_w_m2 = [this, &f_w_m1](double m) {return f_w_m1(m); };
for (int i = 0; i < 4; ++i)
m1 += f_w_m1(_amazon_mobility(0, (size_t)i));
for (int i = 0; i < 4; ++i)
m2 += f_w_m2(_amazon_mobility(1, (size_t)i));
#ifdef _DEBUG
emit_key_value("m1", m1);
emit_key_value("m2", m2);
emit_key_value("f(m1,w)", f_w_m1(m1));
emit_key_value("f(m2,w)", f_w_m2(m2));
emit_key_value("m", f_w_m2(m2) - f_w_m1(m1));
#endif
return m2 - m1;
}
//扁平化二维距离数组
class _distance_flat_wrapper {
std::array<distance_matrix_group, 2>* p;
public:
_distance_flat_wrapper(std::array<distance_matrix_group, 2>& v) :p(&v) {};
~_distance_flat_wrapper() = default;
distance_matrix& operator[](size_t idx) {
return (*p)[idx / 4][idx % 4];
}
};
_distance_flat_wrapper _flat_dm_1{ dm_1 };
//只有一项满足
std::tuple<bool, size_t> _only_one_satisfy(std::function<bool(size_t)> condition) {
for (int i = 0; i < 8; ++i)
if (condition(i)) {
bool satisfy = true;
for (int j = 0; j < 8; ++j) {
if (i == j) continue;
if (condition(j)) goto end;
}
return std::make_tuple(true, i);
}
end:
return std::make_tuple(false, 0);
}
//计算amazon的独占区域集合
std::array<std::array<size_t, 4>, 2> _amazon_exclusive_access_num() {
auto is_reachable_closure = [this](uint8_t x, uint8_t y) {
return [x, y, this](size_t piece_idx) {
return _flat_dm_1[piece_idx][x][y] != 255;
};
};
std::array<std::array<size_t, 4>, 2> exclusive_access_num = { 0 };
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) {
auto [found, result] = _only_one_satisfy(is_reachable_closure(i, j));
if (found) ++exclusive_access_num[result / 4][result % 4];
}
return exclusive_access_num;
}
//生成守卫(guard)参量
double _guard_ingredient() {
long long sum = 0;
auto res = _amazon_exclusive_access_num();
for (auto v : res[0]) sum += v;
for (auto v : res[1]) sum -= v;
#ifdef _DEBUG
emit_key_value("g(n)", 0.2 * (sum > 0 ? std::pow(1.1, sum) : -std::pow(1.1, -sum)), true);
#endif
return 0.2 * (sum > 0 ? std::pow(1.1, sum) : -std::pow(1.1, -sum));
}
};
}
#endif