-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
373 lines (312 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from util.misc import collate_fn_with_mask as collate_fn
from engine import train_one_epoch, train_one_epoch_w_accum, evaluate
from models import build_model
from datasets import build_dataset, train_transforms, test_transforms
from util.logger import get_logger
from util.config import Config
def get_args_parser():
parser = argparse.ArgumentParser('Transformer-based visual grounding', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--lr_vis_enc', default=1e-5, type=float)
parser.add_argument('--lr_bert', default=1e-5, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--lr_drop', default=60, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--checkpoint_step', default=1, type=int)
parser.add_argument('--checkpoint_latest', action='store_true')
parser.add_argument('--checkpoint_best', action='store_true')
# Model parameters
parser.add_argument('--load_weights_path', type=str, default=None,
help="Path to the pretrained model.")
parser.add_argument('--freeze_modules', type=list, default=[])
parser.add_argument('--freeze_param_names', type=list, default=[])
parser.add_argument('--freeze_epochs', type=int, default=1)
parser.add_argument('--freeze_losses', type=list, default=[])
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=1, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Bert
parser.add_argument('--bert_model', default='bert-base-uncased', type=str,
help='Bert model')
parser.add_argument('--bert_token_mode', default='bert-base-uncased', type=str, help='Bert tokenizer mode')
parser.add_argument('--bert_output_dim', default=768, type=int,
help='Size of the output of Bert')
parser.add_argument('--bert_output_layers', default=4, type=int,
help='the output layers of Bert')
parser.add_argument('--max_query_len', default=40, type=int,
help='The maximum total input sequence length after WordPiece tokenization.')
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--loss_loc', default='loss_boxes', type=str,
help="The loss function for the predicted boxes")
parser.add_argument('--box_xyxy', action='store_true',
help='Use xyxy format to encode bounding boxes')
# * Loss coefficients
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--other_loss_coefs', default={}, type=float)
# dataset parameters
parser.add_argument('--data_root', default='./data/')
parser.add_argument('--split_root', default='./split/data/')
parser.add_argument('--dataset', default='gref')
parser.add_argument('--test_split', default='val')
parser.add_argument('--img_size', default=640)
parser.add_argument('--cache_images', action='store_true')
parser.add_argument('--output_dir', default='work_dirs/',
help='path where to save, empty for no saving')
parser.add_argument('--save_pred_path', default='')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--pin_memory', default=True, type=boolean_string)
parser.add_argument('--collate_fn', default='collate_fn')
parser.add_argument('--batch_size_val', default=16, type=int)
parser.add_argument('--batch_size_test', default=1, type=int)
parser.add_argument('--train_transforms', default=train_transforms)
parser.add_argument('--test_transforms', default=test_transforms)
parser.add_argument('--enable_batch_accum', action='store_true')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# configure file
parser.add_argument('--config', type=str, help='Path to the configure file.')
parser.add_argument('--model_config')
return parser
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
class ParamFreezer(object):
def __init__(self, module_names, param_names=[]):
self.module_names = module_names
self.freeze_params = dict()
self.global_param_names = param_names
def freeze(self, model):
for name in self.module_names:
module = getattr(model, name)
self.freeze_params[name] = list()
for k, v in module.named_parameters():
if v.requires_grad:
v.requires_grad_(False)
self.freeze_params[name].append(k)
if len(self.global_param_names) == 0:
return
for k, v in model.named_parameters():
if k in self.global_param_names and v.requires_grad:
v.requires_grad_(False)
def unfreeze(self, model):
for name in self.module_names:
module = getattr(model, name)
keys = self.freeze_params[name]
for k, v in module.named_parameters():
if k in keys:
v.requires_grad_(True)
if len(self.global_param_names) == 0:
return
for k, v in model.named_parameters():
if k in self.global_param_names:
v.requires_grad_(True)
def main(args):
utils.init_distributed_mode(args)
logger = get_logger("train", args.output_dir, utils.get_rank(), filename='iter.log')
epoch_logger = get_logger("train_epoch", args.output_dir, utils.get_rank(), filename='epoch.log')
logger.info(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessor = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
backbone_param = [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]
vis_enc_param = [p for n, p in model_without_ddp.named_parameters() if p.requires_grad and
(n.startswith('trans_encoder') or n.startswith('input_proj'))]
bert_param = [p for p in model_without_ddp.bert.parameters() if p.requires_grad]
rest_param = [p for n, p in model_without_ddp.named_parameters() if p.requires_grad and
(n.startswith('trans_decoder') or n.startswith('bbox_embed') or n.startswith('bert_proj'))]
cnt_backbone = sum([p.numel() for p in backbone_param])
cnt_vis_enc = sum([p.numel() for p in vis_enc_param])
cnt_bert = sum([p.numel() for p in bert_param])
cnt_rest = sum([p.numel() for p in rest_param])
cnt_whole = sum([p.numel() for p in model_without_ddp.parameters() if p.requires_grad])
logger.info(f'The num of learnable parameters: backbone({cnt_backbone}), vis_enc({cnt_vis_enc}), '
f'bert({cnt_bert}), rest({cnt_rest})')
logger.info(f'Check the whole parameters: {cnt_whole} = {cnt_backbone + cnt_vis_enc + cnt_bert + cnt_rest}')
param_dicts = [{'params': rest_param}, # base_lr
{'params': backbone_param, 'lr': args.lr_backbone}, # base_lr/10.
{'params': vis_enc_param, 'lr': args.lr_vis_enc},
{'params': bert_param, 'lr': args.lr_bert},] # base_lr/10.
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
dataset_train = build_dataset(test=False, args=args)
dataset_val = build_dataset(test=True, args=args)
logger.info(f'The size of dataset: train({len(dataset_train)}) val({len(dataset_val)})')
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if dataset_val.cache_images==True:
for i in sampler_val: dataset_val.cache(i)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
pin_memory=args.pin_memory, collate_fn=collate_fn,
num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size_val, sampler=sampler_val,
pin_memory=args.pin_memory, drop_last=False,
collate_fn=collate_fn, num_workers=args.num_workers)
epoch_trainer = train_one_epoch
if args.enable_batch_accum:
epoch_trainer = train_one_epoch_w_accum
epoch_eval = evaluate
output_dir = Path(args.output_dir)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
elif args.load_weights_path:
model_without_ddp.load_pretrained_weights(args.load_weights_path)
if args.eval:
print(epoch_eval)
test_stats, test_acc, test_time = epoch_eval(model, criterion, postprocessor, data_loader_val, device, args.save_pred_path)
logger.info(' '.join(['[Test accuracy]',
*[f'{k}: {v:.4f}' for k, v in test_acc.items()],
'\n[Test time]',
*[f'{k}: {v:.6f}' for k, v in test_time.items()]]))
return
if args.start_epoch < args.freeze_epochs and args.freeze_modules:
logger.info(f'Freeze weights: {args.freeze_modules} and {args.freeze_param_names}')
param_freezer = ParamFreezer(args.freeze_modules, args.freeze_param_names)
param_freezer.freeze(model_without_ddp)
if args.distributed: # re-wrap the model to avoid error: 'parameters that were not used in producing loss'
model = torch.nn.parallel.DistributedDataParallel(model_without_ddp, device_ids=[args.gpu])
model_without_ddp = model.module
logger.info("Start training")
start_time = time.time()
best_acc = 0
for epoch in range(args.start_epoch, args.epochs):
torch.cuda.empty_cache()
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = epoch_trainer(
model, criterion, data_loader_train, optimizer, device, epoch, args.epochs, args.clip_max_norm
)
if (epoch + 1) == args.freeze_epochs and args.freeze_modules:
logger.info(f'Unfreeze weights: {args.freeze_modules}')
param_freezer.unfreeze(model_without_ddp)
if args.distributed: # re-wrap the model to ensure the same gradients for unfrozen weights
model = torch.nn.parallel.DistributedDataParallel(model_without_ddp, device_ids=[args.gpu])
model_without_ddp = model.module
lr_scheduler.step()
val_stats, val_acc, _ = epoch_eval(
model, criterion, postprocessor, data_loader_val, device, args.save_pred_path
)
if args.output_dir:
print(f'Save model to {args.output_dir}')
checkpoint_paths = [output_dir / 'checkpoint.pth']
if args.checkpoint_best:
if val_acc['Acc@0.50'] > best_acc:
checkpoint_paths.append(output_dir / 'checkpoint_best_acc.pth')
best_acc = val_acc['Acc@0.50']
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.checkpoint_step == 0:
if args.checkpoint_latest:
checkpoint_paths.append(output_dir / 'checkpoint_latest.pth')
else:
checkpoint_paths.append(output_dir / f'checkpoint{epoch+1:04}.pth')
for checkpoint_path in checkpoint_paths:
if checkpoint_path.name == 'checkpoint.pth':
if (epoch + 1) == args.epochs:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
elif checkpoint_path.name in ['checkpoint_best_acc.pth']:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
else:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
if args.output_dir and utils.is_main_process():
epoch_logger.info(' '.join(
[f'Epoch [{epoch + 1}](train stats)',
*[f'train_{k}: {v:.4f}' for k, v in train_stats.items()]]))
epoch_logger.info(' '.join(
[f'Epoch [{epoch + 1}](val stats)',
*[f' val_{k}: {v:.4f}' for k, v in val_stats.items()]]))
epoch_logger.info(' '.join(
[f'Epoch [{epoch + 1}](val acc)',
*[f'{k}: {v:.4f}' for k, v in val_acc.items()]]))
epoch_logger.info('\n')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('VLTVG training script', parents=[get_args_parser()])
args = parser.parse_args()
if args.config:
cfg = Config(args.config)
cfg.merge_to_args(args)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)