-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
364 lines (334 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
from models.ner_model import BertSoftmaxForNer, LEBertSoftmaxForNer, LEBertCrfForNer, BertCrfForNer
import argparse
from torch.utils.tensorboard import SummaryWriter
import random
import os
import numpy as np
from os.path import join
from loguru import logger
import time
from transformers import BertTokenizer, BertConfig
from torch.utils.data import Dataset, DataLoader
from processors.processor import LEBertProcessor, BertProcessor
import json
from tqdm import tqdm
from metrics.ner_metrics import SeqEntityScore
import transformers
def set_train_args():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default='gpu', choices=['gpu', 'cpu'], help="gpu or cpu")
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行训练')
parser.add_argument("--output_path", type=str, default='output/', help='模型与预处理数据的存放位置')
parser.add_argument("--pretrain_embed_path", type=str, default='/Users/yangjianxin/Downloads/tencent-ailab-embedding-zh-d200-v0.2.0/tencent-ailab-embedding-zh-d200-v0.2.0.txt', help='预训练词向量路径')
parser.add_argument('--loss_type', default='ce', type=str, choices=['lsr', 'focal', 'ce'], help='损失函数类型')
parser.add_argument('--add_layer', default=1, type=str, help='在bert的第几层后面融入词汇信息')
parser.add_argument("--lr", type=float, default=1e-5, help='Bert的学习率')
parser.add_argument("--crf_lr", default=1e-3, type=float, help="crf的学习率")
parser.add_argument("--adapter_lr", default=1e-3, type=float, help="crf的学习率")
parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.")
parser.add_argument('--eps', default=1.0e-08, type=float, required=False, help='AdamW优化器的衰减率')
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--batch_size_train", type=int, default=4)
parser.add_argument("--batch_size_eval", type=int, default=4)
parser.add_argument("--eval_step", type=int, default=2, help="训练多少步,查看验证集的指标")
parser.add_argument("--max_seq_len", type=int, default=150, help="输入的最大长度")
parser.add_argument("--max_word_num", type=int, default=3, help="每个汉字最多融合多少个词汇信息")
parser.add_argument("--max_scan_num", type=int, default=10000, help="取预训练词向量的前max_scan_num个构造字典树")
parser.add_argument("--data_path", type=str, default="datasets/resume/", help='数据集存放路径')
# parser.add_argument("--train_file", type=str, default="datasets/cner/train.txt")
# parser.add_argument("--dev_file", type=str, default="datasets/cner/dev.txt")
# parser.add_argument("--test_file", type=str, default="datasets/cner/test.txt")
parser.add_argument("--dataset_name", type=str, choices=['resume', "weibo", 'ontonote4', 'msra'], default='resume', help='数据集名称')
parser.add_argument("--model_class", type=str, choices=['lebert-softmax', 'bert-softmax', 'bert-crf', 'lebert-crf'],
default='lebert-softmax', help='模型类别')
parser.add_argument("--pretrain_model_path", type=str, default="pretrain_model/bert-base-chinese")
parser.add_argument("--overwrite", action='store_true', default=True, help="覆盖数据处理的结果")
parser.add_argument("--do_train", action='store_true', default=True)
parser.add_argument("--do_eval", action='store_true', default=True)
parser.add_argument("--load_word_embed", action='store_true', default=True, help='是否加载预训练的词向量')
parser.add_argument('--markup', default='bios', type=str, choices=['bios', 'bio'], help='数据集的标注方式')
parser.add_argument('--grad_acc_step', default=1, type=int, required=False, help='梯度积累的步数')
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False, help='梯度裁剪阈值')
parser.add_argument('--seed', type=int, default=42, help='设置随机种子')
parser.add_argument('--num_workers', type=int, default=0, help="dataloader加载数据时使用的线程数量")
# parser.add_argument('--patience', type=int, default=0, help="用于early stopping,设为0时,不进行early stopping.early stop得到的模型的生成效果不一定会更好。")
parser.add_argument('--warmup_proportion', type=float, default=0.1, help='Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.')
args = parser.parse_args()
return args
def seed_everything(seed=42):
"""
设置整个开发环境的seed
:param seed:
:return:
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# some cudnn methods can be random even after fixing the seed
# unless you tell it to be deterministic
torch.backends.cudnn.deterministic = True
def get_optimizer(model, args, warmup_steps, t_total):
# todo 检查
no_bert = ["word_embedding_adapter", "word_embeddings", "classifier", "crf"]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
# bert no_decay
{
"params": [p for n, p in model.named_parameters()
if (not any(nd in n for nd in no_bert) or n == 'bert.embeddings.word_embeddings.weight') and any(nd in n for nd in no_decay)],
"weight_decay": 0.0, 'lr': args.lr
},
# bert decay
{
"params": [p for n, p in model.named_parameters()
if (not any(nd in n for nd in no_bert) or n == 'bert.embeddings.word_embeddings.weight') and not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, 'lr': args.lr
},
# other no_decay
{
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_bert) and n != 'bert.embeddings.word_embeddings.weight' and any(nd in n for nd in no_decay)],
"weight_decay": 0.0, "lr": args.adapter_lr
},
# other decay
{
"params": [p for n, p in model.named_parameters() if
any(nd in n for nd in no_bert) and n != 'bert.embeddings.word_embeddings.weight' and not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay, "lr": args.adapter_lr
}
]
optimizer = transformers.AdamW(optimizer_grouped_parameters, lr=args.lr, eps=args.eps)
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total
)
return optimizer, scheduler
def train(model, train_loader, dev_loader, test_loader, optimizer, scheduler, args):
logger.info("start training")
model.train()
device = args.device
best = 0
dev = 0
for epoch in range(args.epochs):
logger.info('start {}-th epoch training'.format(epoch + 1))
for batch_idx, data in enumerate(tqdm(train_loader)):
step = epoch * len(train_loader) + batch_idx + 1
input_ids = data['input_ids'].to(device)
token_type_ids = data['token_type_ids'].to(device)
attention_mask = data['attention_mask'].to(device)
label_ids = data['label_ids'].to(device)
# 不同模型输入不同
if args.model_class == 'bert-softmax':
loss, logits = model(input_ids, attention_mask, token_type_ids, args.ignore_index, label_ids)
elif args.model_class == 'bert-crf':
loss, logits = model(input_ids, attention_mask, token_type_ids, label_ids)
elif args.model_class == 'lebert-softmax':
word_ids = data['word_ids'].to(device)
word_mask = data['word_mask'].to(device)
loss, logits = model(input_ids, attention_mask, token_type_ids, word_ids, word_mask, args.ignore_index, label_ids)
elif args.model_class == 'lebert-crf':
word_ids = data['word_ids'].to(device)
word_mask = data['word_mask'].to(device)
loss, logits = model(input_ids, attention_mask, token_type_ids, word_ids, word_mask, label_ids)
loss = loss.mean() # 对多卡的loss取平均
# 梯度累积
loss = loss / args.grad_acc_step
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# 进行一定step的梯度累计之后,更新参数
if step % args.grad_acc_step == 0:
# 更新参数
optimizer.step()
# 更新学习率
scheduler.step()
# 清空梯度信息
optimizer.zero_grad()
# 评测验证集和测试集上的指标
if step % args.eval_step == 0:
logger.info('evaluate dev set')
dev_result = evaluate(args, model, dev_loader)
logger.info('evaluate test set')
test_result = evaluate(args, model, test_loader)
writer.add_scalar('dev loss', dev_result['loss'], step)
writer.add_scalar('dev f1', dev_result['f1'], step)
writer.add_scalar('dev precision', dev_result['acc'], step)
writer.add_scalar('dev recall', dev_result['recall'], step)
writer.add_scalar('test loss', test_result['loss'], step)
writer.add_scalar('test f1', test_result['f1'], step)
writer.add_scalar('test precision', test_result['acc'], step)
writer.add_scalar('test recall', test_result['recall'], step)
model.train()
if best < test_result['f1']:
best = test_result['f1']
dev = dev_result['f1']
logger.info('higher f1 of testset is {}, dev is {} in step {} epoch {}'.format(best, dev, step, epoch+1))
# save_path = join(args.output_path, 'checkpoint-{}'.format(step))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(args.output_path)
logger.info('best f1 of test is {}, dev is {}'.format(best, dev))
def evaluate(args, model, dataloader):
"""
计算数据集上的指标
:param args:
:param model:
:param dataloader:
:return:
"""
model.eval()
device = args.device
metric = SeqEntityScore(args.id2label, markup=args.markup)
# Eval!
logger.info("***** Running evaluation *****")
# logger.info(" Num examples = {}".format(len(dataloader)))
# logger.info(" Batch size = {}".format(args.batch_size_eval))
eval_loss = 0.0 #
with torch.no_grad():
for data in tqdm(dataloader):
input_ids = data['input_ids'].to(device)
token_type_ids = data['token_type_ids'].to(device)
attention_mask = data['attention_mask'].to(device)
label_ids = data['label_ids'].to(device)
# 不同模型输入不同
if args.model_class == 'bert-softmax':
loss, logits = model(input_ids, attention_mask, token_type_ids, args.ignore_index, label_ids)
elif args.model_class == 'bert-crf':
loss, logits = model(input_ids, attention_mask, token_type_ids, label_ids)
elif args.model_class == 'lebert-softmax':
word_ids = data['word_ids'].to(device)
word_mask = data['word_mask'].to(device)
loss, logits = model(input_ids, attention_mask, token_type_ids, word_ids, word_mask, args.ignore_index,
label_ids)
elif args.model_class == 'lebert-crf':
word_ids = data['word_ids'].to(device)
word_mask = data['word_mask'].to(device)
loss, logits = model(input_ids, attention_mask, token_type_ids, word_ids, word_mask, label_ids)
loss = loss.mean() # 对多卡的loss取平均
eval_loss += loss
input_lens = (torch.sum(input_ids != 0, dim=-1) - 2).tolist() # 减去padding的[CLS]与[SEP]
if args.model_class in ['lebert-crf', 'bert-crf']:
preds = model.crf.decode(logits, attention_mask).squeeze(0)
preds = preds[:, 1:].tolist() # 减去padding的[CLS]
else:
preds = torch.argmax(logits, dim=2)[:, 1:].tolist() # 减去padding的[CLS]
label_ids = label_ids[:, 1:].tolist() # 减去padding的[CLS]
# preds = np.argmax(logits.cpu().numpy(), axis=2).tolist()
# label_ids = label_ids.cpu().numpy().tolist()
for i in range(len(label_ids)):
input_len = input_lens[i]
pred = preds[i][:input_len]
label = label_ids[i][:input_len]
metric.update(pred_paths=[pred], label_paths=[label])
logger.info("\n")
eval_loss = eval_loss / len(dataloader)
eval_info, entity_info = metric.result()
results = {f'{key}': value for key, value in eval_info.items()}
results['loss'] = eval_loss
logger.info("***** Eval results *****")
info = "-".join([f' {key}: {value:.4f} ' for key, value in results.items()])
logger.info(info)
logger.info("***** Entity results *****")
for key in sorted(entity_info.keys()):
logger.info("******* %s results ********"%key)
info = "-".join([f' {key}: {value:.4f} ' for key, value in entity_info[key].items()])
logger.info(info)
return results
MODEL_CLASS = {
'lebert-softmax': LEBertSoftmaxForNer,
'lebert-crf': LEBertCrfForNer,
'bert-softmax': BertSoftmaxForNer,
'bert-crf': BertCrfForNer
}
PROCESSOR_CLASS = {
'lebert-softmax': LEBertProcessor,
'lebert-crf': LEBertProcessor,
'bert-softmax': BertProcessor,
'bert-crf': BertProcessor
}
def main(args):
# 分词器
tokenizer = BertTokenizer.from_pretrained(args.pretrain_model_path, do_lower_case=True)
# 数据处理器
processor = PROCESSOR_CLASS[args.model_class](args, tokenizer)
args.id2label = processor.label_vocab.idx2token
args.ignore_index = processor.label_vocab.convert_token_to_id('[PAD]')
# 初始化模型配置
config = BertConfig.from_pretrained(args.pretrain_model_path)
config.num_labels = processor.label_vocab.size
config.loss_type = args.loss_type
if args.model_class in ['lebert-softmax', 'lebert-crf']:
config.add_layer = args.add_layer
config.word_vocab_size = processor.word_embedding.shape[0]
config.word_embed_dim = processor.word_embedding.shape[1]
# 初始化模型
model = MODEL_CLASS[args.model_class].from_pretrained(args.pretrain_model_path, config=config).to(args.device)
# 初始化模型的词向量
if args.model_class in ['lebert-softmax', 'lebert-crf'] and args.load_word_embed:
logger.info('initialize word_embeddings with pretrained embedding')
model.word_embeddings.weight.data.copy_(torch.from_numpy(processor.word_embedding))
# 训练
if args.do_train:
# 加载数据集
train_dataset = processor.get_train_data()
# train_dataset = train_dataset[:8]
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size_train, shuffle=True,
num_workers=args.num_workers)
dev_dataset = processor.get_dev_data()
# dev_dataset = dev_dataset[:4]
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size_eval, shuffle=False,
num_workers=args.num_workers)
test_dataset = processor.get_test_data()
# test_dataset = test_dataset[:4]
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size_eval, shuffle=False,
num_workers=args.num_workers)
t_total = len(train_dataloader) // args.grad_acc_step * args.epochs
warmup_steps = int(t_total * args.warmup_proportion)
# optimizer = transformers.AdamW(model.parameters(), lr=args.lr, eps=args.eps)
# scheduler = transformers.get_linear_schedule_with_warmup(
# optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total
# )
optimizer, scheduler = get_optimizer(model, args, warmup_steps, t_total)
train(model, train_dataloader, dev_dataloader, test_dataloader, optimizer, scheduler, args)
# 测试集上的指标
if args.do_eval:
# 加载验证集
dev_dataset = processor.get_dev_data()
# dev_dataset = dev_dataset[:4]
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size_eval, shuffle=False,
num_workers=args.num_workers)
# 加载测试集
test_dataset = processor.get_test_data()
# test_dataset = test_dataset[:4]
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size_eval, shuffle=False,
num_workers=args.num_workers)
model = MODEL_CLASS[args.model_class].from_pretrained(args.output_path, config=config).to(args.device)
model.eval()
result = evaluate(args, model, dev_dataloader)
logger.info('devset precision:{}, recall:{}, f1:{}, loss:{}'.format(result['acc'], result['recall'], result['f1'], result['loss'].item()))
# 测试集上的指标
result = evaluate(args, model, test_dataloader)
logger.info(
'testset precision:{}, recall:{}, f1:{}, loss:{}'.format(result['acc'], result['recall'], result['f1'],
result['loss'].item()))
if __name__ == '__main__':
# 设置参数
args = set_train_args()
seed_everything(args.seed)
args.device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'gpu' else "cpu")
pretrain_model = 'mengzi' if 'mengzi' in args.pretrain_model_path else 'bert-base'
args.output_path = join(args.output_path, args.dataset_name, args.model_class, pretrain_model, 'load_word_embed' if args.load_word_embed else 'not_load_word_embed')
args.train_file = join(args.data_path, 'train.json')
args.dev_file = join(args.data_path, 'dev.json')
args.test_file = join(args.data_path, 'test.json')
args.label_path = join(args.data_path, 'labels.txt')
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
if args.do_train:
cur_time = time.strftime("%Y%m%d%H%M%S", time.localtime())
logger.add(join(args.output_path, 'train-{}.log'.format(cur_time)))
logger.info(args)
writer = SummaryWriter(args.output_path)
main(args)