-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhybridRecom.py
519 lines (367 loc) · 18 KB
/
hybridRecom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
from surprise import Reader, Dataset, SVD
from surprise.model_selection import KFold
from surprise.model_selection.validation import cross_validate
import copy
from datetime import datetime
print("Import Success")
# In[2]:
meta = pd.read_csv('Dataset/movies_metadata.csv')
meta.head()
# In[3]:
# Rating
ratings = pd.read_csv('Dataset/ratings_small.csv')
ratings.head()
# In[4]:
#Links of IMDb and TMDb
links = pd.read_csv('Dataset/links_small.csv')
links.head()
# In[5]:
keywords = pd.read_csv('Dataset/keywords.csv')
keywords.head()
# In[6]:
# Content based Recommender System
meta['overview'] = meta['overview'].fillna('')
meta['overview'].head()
# In[7]:
pd.DataFrame({'feature':meta.dtypes.index, 'dtype':meta.dtypes.values})
# In[8]:
meta = meta.drop([19730, 29503, 35587]) # Remove these ids to solve ValueError: "Unable to parse string..."
meta['id'] = pd.to_numeric(meta['id'])
# In[9]:
pd.DataFrame({'feature':links.dtypes.index, 'dtype':links.dtypes.values})
# In[10]:
col=np.array(links['tmdbId'], np.int64)
links['tmdbId']=col
# In[11]:
meta.rename(columns={'id':'tmdbId'}, inplace=True)
meta = pd.merge(meta,links,on='tmdbId')
meta.drop(['imdb_id'], axis=1, inplace=True)
meta.head()
# In[12]:
tfidf = TfidfVectorizer(stop_words='english')
# Constructing matrix TF-IDF
tfidf_matrix = tfidf.fit_transform(meta['overview'])
tfidf_matrix.shape
# In[13]:
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
indices = pd.Series(meta.index, index=meta['original_title']).drop_duplicates()
# In[14]:
def recommend(title, cosine_sim=cosine_sim):
idx = indices[title]
sim_scores = list(enumerate(cosine_sim[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:16]
movie_indices = [i[0] for i in sim_scores]
for i in movie_indices:
pop = meta.at[i,'vote_average']
if pop<5 or pop>10:
movie_indices.remove(i)
return meta[['original_title','vote_average']].iloc[movie_indices]
# In[15]:
recommend('Iron Man')
# In[16]:
reader = Reader()
df = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']], reader)
kf = KFold(n_splits=5)
kf.split(df)
# In[ ]:
svd = SVD()
cross_validate(svd, df, measures=['RMSE', 'MAE'])
trainset = df.build_full_trainset()
svd.fit(trainset)
# In[ ]:
ratings[ratings['userId'] == 10]
# In[ ]:
# smaller link file reload
links_df = pd.read_csv('Dataset/links_small.csv')
col=np.array(links_df['tmdbId'], np.int64)
links_df['tmdbId']=col
links_df = links_df.merge(meta[['title', 'tmdbId']], on='tmdbId').set_index('title')
links_index = links_df.set_index('tmdbId')
# In[ ]:
def hybrid(userId, title):
idx = indices[title]
tmdbId = links_df.loc[title]['tmdbId'] # Get the corresponding tmdb id
sim_scores = list(enumerate(cosine_sim[idx]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:31] # Scores of 30 similar movies
movie_indices = [i[0] for i in sim_scores]
movies = meta.iloc[movie_indices][['title', 'vote_average', 'tmdbId']]
movies['est'] = movies['tmdbId'].apply(lambda x: svd.predict(userId, links_index.loc[x]['movieId']).est) # Estimated prediction using svd
movies = movies.sort_values('est', ascending=False) # Rank movies according to the predicted values
movies.columns = ['Title', 'Vote Average', 'TMDb Id', 'Estimated Prediction']
return movies.head(30) # Display top 30 recommended movies
# In[ ]:
hybrid(30,'The Conjuring')
result = hybrid(30,'Batman Begins')
print("data getting passed in contextual")
print(result)
# In[ ]:
# necessary functions for contextual_update function
def day_time():
now = datetime.now().time()
morning=now.replace(hour=12,minute=0,second=0,microsecond=0)
afternoon=now.replace(hour=16,minute=0,second=0,microsecond=0)
evening=now.replace(hour=19,minute=0,second=0,microsecond=0)
if now< morning :
return "morning"
elif now<afternoon :
return "afternoon"
elif now<evening :
return "evening"
else :
return "night"
def season():
month = datetime.now().month
if month < 4:
return "winter"
elif month <6:
return "summer"
elif month <9:
return "rainy"
elif month < 11:
return "autumn"
else :
return "winter"
def is_weekend():
day=datetime.now().isoweekday()
if day< 6:
return False
return True
#testing function
#day_time()
season()
# In[ ]:
# Function to include movies on specific dates -
def special_date(recommended_list,date_passed):
print("special date function reached")
date_event = datetime.now().date()
# Independence Day
date_event=date_event.replace(month=8,day=15)
new_list=recommended_list.copy()
if date_event == date_passed:
# Vote Average TMDb Id Estimated Prediction
new_movie = pd.DataFrame({"Title":["Border","Uri:The Surgical Strike"],
"Vote Average":[6.8,7.1],
"TMDb Id":[33125,554600],
"Estimated Prediction":[5.0,5.0],
"tmdbId":[33125,554600],
"genres":["[{'name':'Action'},{'name':'History'},{'name':'War'}]","[{'name':'Action'},{'name':'Drama'},{'name':'War'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#Repubic Day
date_event=date_event.replace(month=1,day=26)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["Shaheed","Border","Uri:The Surgical Strike"],
"Vote Average":[5.0,6.8,7.1],
"TMDb Id":[498713,33125,554600],
"Estimated Prediction":[5.0,5.0,5.0],
"tmdbId":[498713,33125,554600],
"genres":["[{'name':'War'},{'name':'History'}]","[{'name':'Action'},{'name':'History'},{'name:'War'}]","[{'name':'Action'},{'name':'Drama'},{'name':'War'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#Teachers Day
date_event=date_event.replace(month=9,day=5)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["Super 30","Taare Zameen Par"],
"Vote Average":[7.6,8.0],
"TMDb Id":[534075,7508],
"Estimated Prediction":[5.0,5.0],
"tmdbId":[534075,7508],
"genres":["[{'name':'Drama'}]","[{'name':'Drama'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#Children day
date_event=date_event.replace(month=11,day=14)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["Taare Zameen Par","Chillar Party"],
"Vote Average":[8.0,6.9],
"TMDb Id":[7508,69891],
"Estimated Prediction":[5.0,5.0],
"tmdbId":[7508,69891],
"genres":["[{'name':'Drama'}]","[{'name':'Drama'},{'name':'Comedy'},{'name':'Family'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#Christmas
date_event=date_event.replace(month=12,day=25)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["Let It Snow","Home Alone"],
"Vote Average":[6.1,7.3],
"TMDb Id":[295151,771],
"Estimated Prediction":[5.0,5.0],
"tmdbId":[295151,771],
"genres":["[{'name':'Romance'},{'name':'Comedy'}]","[{'name':'Comedy'},{'name':'Family'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#New Year
date_event=date_event.replace(month=12,day=31)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["New Years Eve"],
"Vote Average":[5.9],
"TMDb Id":[62838],
"Estimated Prediction":[5.0],
"tmdbId":[62838],
"genres":["[{'name':'Comedy'},{'name':'Romance'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
date_event=date_event.replace(month=1,day=1)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["New Years Eve"],
"Vote Average":[5.9],
"TMDb Id":[62838],
"Estimated Prediction":[5.0],
"tmdbId":[62838],
"genres":["[{'name':'Comedy'},{'name':'Romance'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
#Valentine
date_event=date_event.replace(month=2,day=14)
if date_event == date_passed:
new_movie = pd.DataFrame({"Title":["The Notebook","Titanic"],
"Vote Average":[7.9,7.9],
"TMDb Id":[11036,597],
"Estimated Prediction":[5.0,5.0],
"tmdbId":[11036,597],
"genres":["[{'name':'Romance'},{'name':'Drama'}]","[{'name':'Drama'},{'name':'Romance'}]"]
})
new_list = pd.concat([new_movie,recommended_list])
return new_list
# In[ ]:
def recommendation_updater(recommended_list,genre_score):
#print("reached recommendation updater - ")
new_list=recommended_list.copy()
for ind in recommended_list.index:
new_score=0
movie_genre= list(eval(recommended_list['genres'][ind]))
#print(recommended_list['genres'][ind])
#print(type(recommended_list['genres'][ind]))
#print(movie_genre)
curr_genre_list= [li['name'] for li in movie_genre]
#print(curr_genre_list)
for genre in curr_genre_list:
if genre in genre_score:
new_score+=genre_score[genre]
#print(new_score)
new_list['Estimated Prediction'][ind]=new_list['Estimated Prediction'][ind]+new_score
return new_list
# In[ ]:
def contextual_update(list_passed,family=False,device="Mobile",no_of_people=1,date_passed=datetime.now().date()) :
# categories we have romance,action,comedy,drama ,crime and thriller ,documentary,sci-fi
recommended_list=list_passed.copy()
print("Before Context-Awareness based changes - ")
print(list_passed)
# Adding Genres for update
recommended_list = pd.merge(recommended_list,meta[['tmdbId','genres']],left_on=['TMDb Id'],right_on=['tmdbId']).dropna()
# Special Days
test_date=datetime.now().date()
test_date=test_date.replace(month=8,day=15)
recommended_list=special_date(recommended_list,test_date)
recommended_list.reset_index(drop=True,inplace=True)
# Reducing score to take account for contextual_update
effect_rate = 0.75
category=4
recommended_list['Estimated Prediction']=recommended_list['Estimated Prediction']-effect_rate
# Timing based
day_part = day_time()
if day_part == "morning":
scores={
'Romance':0.24*(effect_rate/category),'Action':0.18*(effect_rate/category),'Comedy':0.64*(effect_rate/category),'Drama':0.24*(effect_rate/category),'Crime':0.17*(effect_rate/category)
,'Thriller':0.17*(effect_rate/category),'Documentary':0.25*(effect_rate/category),'Science Fiction':0.28*(effect_rate/category)
}
elif day_part =="afternoon":
scores ={
'Romance':0.18*(effect_rate/category),'Action':0.44*(effect_rate/category),'Comedy':0.48*(effect_rate/category),'Drama':0.35*(effect_rate/category),'Crime':0.5*(effect_rate/category)
,'Thriller':0.5*(effect_rate/category),'Documentary':0.24*(effect_rate/category),'Science Fiction':0.35*(effect_rate/category)
}
elif day_part =="evening":
scores={
'Romance':0.4*(effect_rate/category),'Action':0.34*(effect_rate/category),'Comedy':0.48*(effect_rate/category),'Drama':0.3*(effect_rate/category),'Crime':0.4*(effect_rate/category)
,'Thriller':0.4*(effect_rate/category),'Documentary':0.24*(effect_rate/category),'Science Fiction':0.32*(effect_rate/category)
}
else :
scores={
'Romance':0.57*(effect_rate/category),'Action':0.37*(effect_rate/category),'Comedy':0.42*(effect_rate/category),'Drama':0.37*(effect_rate/category),'Crime':0.54*(effect_rate/category)
,'Thriller':0.54*(effect_rate/category),'Documentary':0.31*(effect_rate/category),'Science Fiction':0.41*(effect_rate/category)
}
recommended_list=recommendation_updater(recommended_list,scores)
# Season based
curr_season = season()
if curr_season == "summer":
scores={
'Romance':0.32*(effect_rate/category),'Action':0.48*(effect_rate/category),'Comedy':0.57*(effect_rate/category),'Drama':0.5*(effect_rate/category),'Crime':0.6*(effect_rate/category)
,'Thriller':0.6*(effect_rate/category),'Documentary':0.27*(effect_rate/category),'Science Fiction':0.47*(effect_rate/category)
}
elif curr_season == "rainy":
scores={
'Romance':0.57*(effect_rate/category),'Action':0.3*(effect_rate/category),'Comedy':0.52*(effect_rate/category),'Drama':0.5*(effect_rate/category),'Crime':0.41*(effect_rate/category)
,'Thriller':0.41*(effect_rate/category),'Documentary':0.14*(effect_rate/category),'Science Fiction':0.32*(effect_rate/category)
}
elif curr_season == "autumn":
scores={
'Romance':0.41*(effect_rate/category),'Action':0.37*(effect_rate/category),'Comedy':0.5*(effect_rate/category),'Drama':0.48*(effect_rate/category),'Crime':0.52*(effect_rate/category)
,'Thriller':0.52*(effect_rate/category),'Documentary':0.31*(effect_rate/category),'Science Fiction':0.44*(effect_rate/category)
}
else :
scores={
'Romance':0.54*(effect_rate/category),'Action':0.45*(effect_rate/category),'Comedy':0.51*(effect_rate/category),'Drama':0.42*(effect_rate/category),'Crime':0.5*(effect_rate/category)
,'Thriller':0.5*(effect_rate/category),'Documentary':0.21*(effect_rate/category),'Science Fiction':0.32*(effect_rate/category)
}
recommended_list=recommendation_updater(recommended_list,scores)
# Weekday based -
if is_weekend():
scores={
'Romance':0.41*(effect_rate/category),'Action':0.48*(effect_rate/category),'Comedy':0.54*(effect_rate/category),'Drama':0.38*(effect_rate/category),'Crime':0.7*(effect_rate/category)
,'Thriller':0.7*(effect_rate/category),'Documentary':0.28*(effect_rate/category),'Science Fiction':0.41*(effect_rate/category)
}
else :
scores={
'Romance':0.37*(effect_rate/category),'Action':0.32*(effect_rate/category),'Comedy':0.51*(effect_rate/category),'Drama':0.32*(effect_rate/category),'Crime':0.48*(effect_rate/category)
,'Thriller':0.48*(effect_rate/category),'Documentary':0.21*(effect_rate/category),'Science Fiction':0.38*(effect_rate/category)
}
recommended_list=recommendation_updater(recommended_list,scores)
# Device Based
if device == "phone":
scores={
'Romance':0.36*(effect_rate/category),'Action':0.24*(effect_rate/category),'Comedy':0.66*(effect_rate/category),'Drama':0.44*(effect_rate/category),'Crime':0.38*(effect_rate/category)
,'Thriller':0.38*(effect_rate/category),'Documentary':0.2*(effect_rate/category),'Science Fiction':0.21*(effect_rate/category)
}
elif device =="tablet":
scores={
'Romance':0.34*(effect_rate/category),'Action':0.37*(effect_rate/category),'Comedy':0.43*(effect_rate/category),'Drama':0.43*(effect_rate/category),'Crime':0.42*(effect_rate/category)
,'Thriller':0.42*(effect_rate/category),'Documentary':0.22*(effect_rate/category),'Science Fiction':0.36*(effect_rate/category)
}
else :
scores={
'Romance':0.33*(effect_rate/category),'Action':0.6*(effect_rate/category),'Comedy':0.24*(effect_rate/category),'Drama':0.3*(effect_rate/category),'Crime':0.66*(effect_rate/category)
,'Thriller':0.66*(effect_rate/category),'Documentary':0.21*(effect_rate/category),'Science Fiction':0.58*(effect_rate/category)
}
recommended_list=recommendation_updater(recommended_list,scores)
# Based on Number of people and Family -
if no_of_people >1 :
if family:
scores={
'Romance':0.1*(effect_rate/category),'Action':0.43*(effect_rate/category),'Comedy':0.66*(effect_rate/category),'Drama':0.49*(effect_rate/category),'Crime':0.26*(effect_rate/category)
,'Thriller':0.26*(effect_rate/category),'Documentary':0.36*(effect_rate/category),'Science Fiction':0.29*(effect_rate/category)
}
else :
scores={
'Romance':0.33*(effect_rate/category),'Action':0.63*(effect_rate/category),'Comedy':0.54*(effect_rate/category),'Drama':0.33*(effect_rate/category),'Crime':0.61*(effect_rate/category)
,'Thriller':0.61*(effect_rate/category),'Documentary':0.17*(effect_rate/category),'Science Fiction':0.54*(effect_rate/category)
}
recommended_list=recommendation_updater(recommended_list,scores)
# removing genre from table
recommended_list.drop(['tmdbId','genres'],axis=1,inplace=True)
# Sorting the list for final result and comparing
#print(list_passed)
recommended_list.sort_values(by='Estimated Prediction',ascending=False,inplace=True)
print(recommended_list)
contextual_update(result)
# In[ ]:
# In[ ]: