-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzkPaillier.go
370 lines (349 loc) · 11 KB
/
zkPaillier.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
package crypto
import (
"crypto/rand"
"fmt"
"hundsun.com/hsl/hschain/common/crypto"
"math/big"
)
type CiphertextProof struct {
Z1 big.Int
Z2 big.Int
C_prime big.Int
}
type CiphertextWitness struct {
X big.Int
R big.Int
}
type CiphertextStatement struct {
Ek PublicKey
C big.Int
}
type EncryptedPairs struct {
C1 []*big.Int
C2 []*big.Int
}
type DataRandomnessPairs struct {
W1 []*big.Int
W2 []*big.Int
R1 []*big.Int
R2 []*big.Int
}
type ResponseOpen struct {
W1 *big.Int
R1 *big.Int
W2 *big.Int
R2 *big.Int
}
type ResponseMask struct {
J uint8
Masked_x *big.Int
Masked_r *big.Int
}
type Response struct {
Open ResponseOpen
Mask ResponseMask
}
type RangeProofNi struct {
Ek *PublicKey
Range_num *big.Int
Ciphertext *big.Int
Encrypted_pairs *EncryptedPairs
Proof []*Response
Error_factor uint64
}
type JoinProof struct {
CipherAmountProof *CiphertextProof
CipherBalanceProof *CiphertextProof
CipherRemainProof *CiphertextProof
EpAmountRange *EncryptedPairs
AmountRangeProof []*Response
EpRemainRange *EncryptedPairs
BalanceRangeProof []*Response
}
func zkpaillier_prove(witness *CiphertextWitness, statement *CiphertextStatement) (*CiphertextProof, error) {
x_prime, _ := rand.Int(rand.Reader, statement.Ek.N)
r_prime, _ := rand.Int(rand.Reader, statement.Ek.N)
c_prime, _ := EncryptNumberWithNonce(&statement.Ek, r_prime, x_prime)
var e_bytes []byte
e_bytes = append(append(append(e_bytes, statement.Ek.N.Bytes()...), statement.C.Bytes()...), c_prime.Bytes()...)
ebytes, err := crypto.HashWithOpts(e_bytes, "SHA256")
if err != nil {
return nil, err
}
e := new(big.Int).SetBytes(ebytes)
z1 := new(big.Int).Add(x_prime, new(big.Int).Mul(&witness.X, e))
fmt.Println("z1 is ",z1)
if statement.Ek.N.Cmp(z1) < 0 {
fmt.Printf("zkpaillier_prove z1 %s more than n %s!\n", z1.String(), statement.Ek.N.String())
}
r_e := new(big.Int).Exp(&witness.R, e, statement.Ek.NSquared)
z2 := new(big.Int).Mod(new(big.Int).Mul(r_prime, r_e), statement.Ek.NSquared)
proof := &CiphertextProof{
Z1: *z1,
Z2: *z2,
C_prime: *c_prime,
}
return proof, nil
}
func zkpaillier_verify(proof *CiphertextProof, statement *CiphertextStatement) (bool, error) {
var e_bytes []byte
c_prime := proof.C_prime
e_bytes = append(append(append(e_bytes, statement.Ek.N.Bytes()...), statement.C.Bytes()...), c_prime.Bytes()...)
ebytes, err := crypto.HashWithOpts(e_bytes, "SHA256")
if err != nil {
return false, err
}
e := new(big.Int).SetBytes(ebytes)
c_z, err := EncryptWithNonce(&statement.Ek, &proof.Z2, proof.Z1.Bytes())
if err != nil {
fmt.Println("EncryptNumberWithNonce c_z ",err.Error())
}
c_e := MulNumber(&statement.Ek, &statement.C, e)
c_z_test := AddCipherNumber(&statement.Ek, c_e, &c_prime)
if c_z.Cmp(c_z_test) == 0 {
return true, nil
}
return false, nil
}
func zkpaillier_encrypted_pairs(ek *PublicKey, range_num *big.Int, error_factor uint,
) (EncryptedPairs, DataRandomnessPairs) {
range_scaled_third := new(big.Int).Div(range_num, new(big.Int).SetInt64(3))
var w1 []*big.Int
var w2 []*big.Int
var i uint
for i = 0; i < error_factor; i++ {
var mid *big.Int
mid,_ = rand.Int(rand.Reader, range_scaled_third)
num := new(big.Int).Add(range_scaled_third, mid)
w1 = append(w1, num)
w2 = append(w2, mid)
}
for i = 0; i < error_factor; i++ {
rand_num, _ := rand.Int(rand.Reader, new(big.Int).SetInt64(2))
if rand_num.Int64() == 1 {
tmp := w2[i]
w2[i] = w1[i]
w1[i] = tmp
}
}
var r1 []*big.Int
var r2 []*big.Int
for i = 0; i < error_factor; i++ {
num, _ := rand.Int(rand.Reader, ek.N)
r1 = append(r1, num)
}
for i = 0; i < error_factor; i++ {
num, _ := rand.Int(rand.Reader, ek.N)
r2 = append(r2, num)
}
var c1 []*big.Int
var c2 []*big.Int
for i := 0; i < len(w1); i++ {
ci, _ := EncryptWithNonce(ek, r1[i], w1[i].Bytes())
c1 = append(c1, ci)
}
for i := 0; i < len(w2); i++ {
ci, _ := EncryptWithNonce(ek, r2[i], w2[i].Bytes())
c2 = append(c2, ci)
}
epairs := EncryptedPairs{c1, c2}
drPairs := DataRandomnessPairs{w1, w2, r1, r2}
return epairs, drPairs
}
func zkpaillier_range_prove(ek *PublicKey, secret_x *big.Int, secret_r *big.Int, e []byte,
range_num *big.Int, data *DataRandomnessPairs, error_factor int) []*Response {
secret_x = new(big.Int).Mod(secret_x,range_num)
range_scaled_third := new(big.Int).Div(range_num, new(big.Int).SetInt64(3))
range_scaled_two_thirds := new(big.Int).Mul(new(big.Int).SetInt64(2), range_scaled_third)
var bits_of_e []byte
var responses []*Response
for i := 0; i < len(e); i++ {
var j uint8
for j = 0; j < 8; j++ {
bit := e[i] >> j & 1
bits_of_e = append(bits_of_e, bit)
}
}
//fmt.Println("zkpaillier_range_prove e is ",bits_of_e)
for i := 0; i < error_factor; i++ {
ei := bits_of_e[i]
var res *Response
if int8(ei) == 0 {
resOpen := ResponseOpen{
W1: data.W1[i],
R1: data.R1[i],
W2: data.W2[i],
R2: data.R2[i],
}
res = &Response{Open: resOpen}
} else if new(big.Int).Add(secret_x, data.W1[i]).Cmp(range_scaled_third) > 0 &&
new(big.Int).Add(secret_x, data.W1[i]).Cmp(range_scaled_two_thirds) < 0 {
resMask := ResponseMask{
J: 1,
Masked_x: new(big.Int).Add(secret_x, data.W1[i]),
Masked_r: new(big.Int).Mod(new(big.Int).Mul(secret_r, data.R1[i]), ek.N),
}
res = &Response{Mask: resMask}
} else {
resMask := ResponseMask{
J: 2,
Masked_x: new(big.Int).Add(secret_x, data.W2[i]),
Masked_r: new(big.Int).Mod(new(big.Int).Mul(secret_r, data.R2[i]), ek.N),
}
res = &Response{Mask: resMask}
}
responses = append(responses, res)
}
return responses
}
func zkpaillier_range_verify(ek *PublicKey, e []byte, encrypted_pairs *EncryptedPairs, responses []*Response,
range_num *big.Int, cipher_x *big.Int, error_factor uint) (bool, error) {
range_scaled_third := new(big.Int).Div(range_num, new(big.Int).SetInt64(3))
range_scaled_two_thirds := new(big.Int).Mul(new(big.Int).SetInt64(2), range_scaled_third)
var bits_of_e []byte
for i := 0; i < len(e); i++ {
var j uint8
for j = 0; j < 8; j++ {
bit := e[i] >> j & 1
bits_of_e = append(bits_of_e, bit)
}
}
var i uint
finalRes := true
fmt.Println("bits_of_e is ", bits_of_e)
for i = 0; i < error_factor; i++ {
ei := bits_of_e[i]
response := responses[i]
if ei == 0 && response.Mask.J == 0 {
expected_c1i, _ := EncryptWithNonce(ek, response.Open.R1, response.Open.W1.Bytes())
expected_c2i, _ := EncryptWithNonce(ek, response.Open.R2, response.Open.W2.Bytes())
if expected_c1i.Cmp(encrypted_pairs.C1[i]) != 0 {
finalRes = false
fmt.Println("finalRes is false 11111")
break
}
if expected_c2i.Cmp(encrypted_pairs.C2[i]) != 0 {
finalRes = false
fmt.Println("finalRes is false 22222")
break
}
w1 := response.Open.W1
w2 := response.Open.W2
flag := (w2.Cmp(range_scaled_third) < 0 &&
w1.Cmp(range_scaled_third) > 0 &&
w1.Cmp(range_scaled_two_thirds) < 0) ||
(w1.Cmp(range_scaled_third) < 0 &&
w2.Cmp(range_scaled_third) > 0 && w2.Cmp(range_scaled_two_thirds) < 0)
if !flag {
finalRes = false
fmt.Printf("finalRes is false 33333 %v %v\n",w1,w2)
break
}
} else if ei == 1 && (response.Mask.J == 1 || response.Mask.J == 2) {
c := new(big.Int)
if response.Mask.J == 1 {
_,c = new(big.Int).QuoRem(new(big.Int).Mul(encrypted_pairs.C1[i], cipher_x), ek.NSquared,c)
} else {
_,c = new(big.Int).QuoRem(new(big.Int).Mul(encrypted_pairs.C2[i], cipher_x), ek.NSquared,c)
}
masked_x := response.Mask.Masked_x
masked_r := response.Mask.Masked_r
enc_zi, err := EncryptWithNonce(ek, masked_r, masked_x.Bytes())
if err != nil {
fmt.Println("finalRes is false 444444 ",err.Error())
return false, err
}
if c.Cmp(enc_zi) != 0 {
fmt.Printf("finalRes is false 5555555,enc_zi is %v,c is %v\n",enc_zi,c)
finalRes = false
break
}
if masked_x.Cmp(range_scaled_third) < 0 || masked_x.Cmp(range_scaled_two_thirds) > 0 {
finalRes = false
if masked_x.Cmp(range_scaled_third) < 0 {
fmt.Println("finalRes is false 66666666")
} else {
fmt.Printf("finalRes is false %s > %s\n", masked_x.String(), range_scaled_two_thirds.String())
}
break
}
} else {
finalRes = false
fmt.Println("finalRes is false 7777777")
break
}
}
return finalRes, nil
}
func zkpaillier_ni_range_prove(ek *PublicKey, range_num *big.Int, ciphertext *big.Int,
secret_x *big.Int, secret_r *big.Int) (*RangeProofNi, error) {
encrypted_pairs, data_randomness_pairs := zkpaillier_encrypted_pairs(ek, range_num, 128)
c1 := encrypted_pairs.C1
c2 := encrypted_pairs.C2
var vec []byte
vec = append(vec, ek.N.Bytes()...)
for _, c1i := range c1 {
vec = append(vec, c1i.Bytes()...)
}
for _, c2i := range c2 {
vec = append(vec, c2i.Bytes()...)
}
e, err := crypto.HashWithOpts(vec, "SHA256")
if err != nil {
return nil, err
}
//assuming digest length > error factor
proof := zkpaillier_range_prove(ek, secret_x, secret_r, e, range_num, &data_randomness_pairs, 128)
ep := &EncryptedPairs{c1, c2}
rpNi := &RangeProofNi{Ek: ek, Range_num: range_num, Ciphertext: ciphertext,
Encrypted_pairs: ep, Proof: proof, Error_factor: 128}
return rpNi, nil
}
func zkpaillier_ni_range_verify(ek *PublicKey, proof []*Response, encrypted_pairs *EncryptedPairs,
ciphertext *big.Int, range_num *big.Int) (bool, error) {
c1 := encrypted_pairs.C1
c2 := encrypted_pairs.C2
var vec []byte
vec = append(vec, ek.N.Bytes()...)
for _, c1i := range c1 {
vec = append(vec, c1i.Bytes()...)
}
for _, c2i := range c2 {
vec = append(vec, c2i.Bytes()...)
}
e, err := crypto.HashWithOpts(vec, "SHA256")
if err != nil {
return false, err
}
return zkpaillier_range_verify(ek, e, encrypted_pairs, proof, range_num, ciphertext, 128)
}
//func zkpaillier_prove_positive(ek *PublicKey, proof []*Response, encrypted_pairs *EncryptedPairs,
// ciphertext *big.Int, range_num *big.Int) (bool,error){
// ret,err := zkpaillier_ni_range_verify(ek,proof,encrypted_pairs,ciphertext,range_num)
// if err != nil {
// return false,err
// }
// if !ret {
// one_third_range := new(big.Int).Div(range_num,new(big.Int).SetInt64(3))
// r,_ := rand.Int(rand.Reader,ek.N)
// cipher_one_third_range,_ := EncryptNumberWithNonce(ek,r,one_third_range)
// cipher_sum := AddCipherNumber(ek,ciphertext,cipher_one_third_range)
// ret1,err := zkpaillier_ni_range_verify(ek,proof,encrypted_pairs,ciphertext,range_num)
//
// }
//}
//func zkpaillier_verify_positive(ek *PublicKey, proof []*Response, encrypted_pairs *EncryptedPairs,
// ciphertext *big.Int, range_num *big.Int) (bool,error){
// ret,err := zkpaillier_ni_range_verify(ek,proof,encrypted_pairs,ciphertext,range_num)
// if err != nil {
// return false,err
// }
// if !ret {
// one_third_range := new(big.Int).Div(range_num,new(big.Int).SetInt64(3))
// r,_ := rand.Int(rand.Reader,ek.N)
// cipher_one_third_range,_ := EncryptNumberWithNonce(ek,r,one_third_range)
// cipher_sum := AddCipherNumber(ek,ciphertext,cipher_one_third_range)
// ret1,err := zkpaillier_ni_range_verify(ek,proof,encrypted_pairs,ciphertext,range_num)
//
// }
//}