-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpractice.py
105 lines (83 loc) · 3.32 KB
/
practice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import logging
import os
import sys
import random
import numpy as np
from torchvision import transforms
import torch
import torch.backends.cudnn as cudnn
from networks.EfficientMISSFormer import EffMISSFormer
from datasets.dataset_synapse import Synapse_dataset, RandomGenerator
from trainer import trainer_synapse
import warnings
warnings.filterwarnings('ignore')
from tensorboardX import SummaryWriter
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import DiceLoss
from torchvision import transforms
from utils import test_single_volume
from torch.nn import functional as F
from datasets.dataset_synapse import Synapse_dataset, RandomGenerator
import matplotlib.pyplot as plt
import pandas as pd
import datetime
def trainer_synapse(args, model, snapshot_path):
test_save_path = os.path.join(snapshot_path, 'test')
os.makedirs(test_save_path, exist_ok=True)
# Set logging
logging.basicConfig(filename=snapshot_path+'/log.txt', level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt="%H:%M:%S")
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
# Set learning rate and other parameters
base_lr = args.base_lr
num_classes = args.num_classes
batch_size = args.batch_size * args.n_gpu
x_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
y_transforms = transforms.ToTensor()
# Load database
db_train = Synapse_dataset(base_dir=args.root_path, list_dir=args.list_dir, split="train",img_size=args.img_size,
norm_x_transform = x_transforms, norm_y_transform = y_transforms)
print("The length of train set is: {}".format(len(db_train)))
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True,
worker_init_fn=worker_init_fn)
db_test = Synapse_dataset(base_dir=args.test_path, split="test_vol", list_dir=args.list_dir, img_size=args.img_size)
testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)
parser = argparse.ArgumentParser()
parser.add_argument('--root_path',type=str,default='/images/PublicDataset/Transunet_synaps/project_TransUNet/data/Synapse/train_npz')
#blabla set all of the argument
args = parser.parse_args()
if __name__ == "__main__":
# step1: set env
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
# step2: check if the training is deterministic
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
#step3: load the data
dataset_name = args.dataset
dataset_config = {
'Synapse': {
'root_path': args.root_path,
'list_dir': args.list_dir,
'num_classes': 9,
},
}
# batch_size and base_lr
# output_dir
net = EffMISSFormer(num_classes=args.num_classes).cuda(0)
trainer = {'Synapse': trainer_synapse,}
trainer[dataset_name](args, net, args.output_dir)# call trainer_synapse