-
Notifications
You must be signed in to change notification settings - Fork 81
/
test_and_generate_H5.py
189 lines (167 loc) · 6.95 KB
/
test_and_generate_H5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# %%
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020-05-27 15:00
# @Author : Xiaoke Huang
# @Email : xiaokehuang@foxmail.com
from modeling.vectornet import HGNN
import torch.nn.functional as F
import torch.optim as optim
import torch
import numpy as np
import pandas as pd
from utils.viz_utils import show_predict_result
import matplotlib.pyplot as plt
import numpy as np
import pdb
import os
from dataset import GraphDataset
from torch_geometric.data import DataLoader
from utils.eval import get_eval_metric_results
from tqdm import tqdm
import time
from typing import List
import pickle
# %%
TRAIN_DIR = os.path.join('interm_data', 'train_intermediate')
VAL_DIR = os.path.join('interm_data', 'val_intermediate')
TEST_DIR = os.path.join('interm_data', 'test_intermediate')
SEED = 13
epochs = 50
device = torch.device('cuda:2' if torch.cuda.is_available() else 'cpu')
batch_size = 4096
decay_lr_factor = 0.3
decay_lr_every = 10
lr = 0.001
in_channels, out_channels = 8, 60
show_every = 10
val_every = 5
small_dataset = False
end_epoch = 0
save_dir = 'trained_params'
best_minade = float('inf')
date = f"200630.epochs{epochs}.lr_decay{decay_lr_factor}.decay_every{decay_lr_every}.lr{lr}"
global_step = 0
FILENAME = 'epoch_9.valminade_2.500.200707.epochs50.lr_decay0.3.decay_every15.lr0.0003.xkhuang.pth'
checkpoint_dir = os.path.join('trained_params', FILENAME)
# checkpoint_dir = None
NORM_CENTERS_DICT_DIR = os.path.join('interm_data', 'test-norm_center_dict.pkl')
output_path = 'competition_files/'
# eval related
max_n_guesses = 1
horizon = 30
miss_threshold = 2.0
#%%
#%%
def save_checkpoint(checkpoint_dir, model, optimizer, end_epoch, val_minade, date):
# state_dict: a Python dictionary object that:
# - for a model, maps each layer to its parameter tensor;
# - for an optimizer, contains info about the optimizer’s states and hyperparameters used.
os.makedirs(checkpoint_dir, exist_ok=True)
state = {
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'end_epoch' : end_epoch,
'val_minade': val_minade
}
checkpoint_path = os.path.join(checkpoint_dir, f'epoch_{end_epoch}.valminade_{val_minade:.3f}.{date}.{"xkhuang"}.pth')
torch.save(state, checkpoint_path)
print('model saved to %s' % checkpoint_path)
def load_checkpoint(checkpoint_path, model):
state = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(state['state_dict'])
# optimizer.load_state_dict(state['optimizer'])
print('model loaded from %s' % checkpoint_path)
#%%
if __name__ == "__main__":
np.random.seed(SEED)
torch.manual_seed(SEED)
# hyper parameters
# train_data = GraphDataset(TRAIN_DIR)
# val_data = GraphDataset(VAL_DIR)
# if small_dataset:
# train_loader = DataLoader(train_data[:1000], batch_size=batch_size)
# val_loader = DataLoader(val_data[:200], batch_size=batch_size)
# else:
# train_loader = DataLoader(train_data, batch_size=batch_size)
# val_loader = DataLoader(val_data, batch_size=batch_size)
test_data = GraphDataset(TEST_DIR)
test_loader = DataLoader(test_data, batch_size=batch_size)
model = HGNN(in_channels, out_channels)
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=decay_lr_every, gamma=decay_lr_factor)
if checkpoint_dir:
load_checkpoint(checkpoint_dir, model)
model = model.to(device)
norm_centers_dict = None
with open(NORM_CENTERS_DICT_DIR, 'rb') as f:
norm_centers_dict = pickle.load(f)
norm_centers_ls = sorted(norm_centers_dict.items())
forecasted_trajectories = {}
seq_index = 0
model.eval()
with torch.no_grad():
for data in test_loader:
data = data.to(device)
out = model(data)
for i in range(out.size(0)):
seq_id = int(norm_centers_ls[seq_index][0])
norm_center = norm_centers_ls[seq_index][1]
pred_y = out[i].view((-1, 2)).cumsum(axis=0).cpu().numpy()
pred_y += norm_center.reshape(-1, 2)
pred_y = np.array([pred_y])
assert(pred_y.shape == (1, 30, 2))
# y = gt[i].view((-1, 2)).cumsum(axis=0).cpu().numpy()
forecasted_trajectories[seq_id] = pred_y
seq_index += 1
from argoverse.evaluation.competition_util import generate_forecasting_h5
generate_forecasting_h5(forecasted_trajectories, output_path, filename=FILENAME)
#%%
#this might take awhile
# metric_results = get_displacement_errors_and_miss_rate(
# forecasted_trajectories, gt_trajectories, max_n_guesses, horizon, miss_threshold
# )
# return metric_results
# overfit the small dataset
# model.train()
# for epoch in range(epochs):
# print(f"start training at epoch:{epoch}")
# acc_loss = .0
# num_samples = 1
# start_tic = time.time()
# for data in train_loader:
# if epoch < end_epoch: break
# if isinstance(data, List):
# y = torch.cat([i.y for i in data], 0).view(-1, out_channels).to(device)
# else:
# data = data.to(device)
# y = data.y.view(-1, out_channels)
# optimizer.zero_grad()
# out = model(data)
# loss = F.mse_loss(out, y)
# loss.backward()
# acc_loss += batch_size * loss.item()
# num_samples += y.shape[0]
# optimizer.step()
# global_step += 1
# if (global_step + 1) % show_every == 0:
# print( f"epoch {epoch} step {global_step}: loss:{loss.item():3f}, lr:{optimizer.state_dict()['param_groups'][0]['lr']: .6f}, time:{time.time() - start_tic: 4f}sec")
# scheduler.step()
# print(
# f"finished epoch {epoch}: loss:{acc_loss / num_samples:.3f}, lr:{optimizer.state_dict()['param_groups'][0]['lr']: .6f}, time:{time.time() - start_tic: 4f}sec")
# if (epoch+1) % val_every == 0 and (not epoch < end_epoch):
# print("eval as epoch:{epoch}")
# metrics = get_eval_metric_results(model, val_loader, device, out_channels, max_n_guesses, horizon, miss_threshold)
# curr_minade = metrics["minADE"]
# print(f"minADE:{metrics['minADE']:3f}, minFDE:{metrics['minFDE']:3f}, MissRate:{metrics['MR']:3f}")
# if curr_minade < best_minade:
# best_minade = curr_minade
# save_checkpoint(save_dir, model, optimizer, epoch, best_minade, date)
# # eval result on the identity dataset
# metrics = get_eval_metric_results(model, val_loader, device, out_channels, max_n_guesses, horizon, miss_threshold)
# curr_minade = metrics["minADE"]
# if curr_minade < best_minade:
# best_minade = curr_minade
# save_checkpoint(save_dir, model, optimizer, -1, best_minade, date)
# %%