-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsetup.py
84 lines (68 loc) · 2.47 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python
import glob
import os
from setuptools import find_packages, setup
import torch
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 1], "Requires PyTorch >= 1.1"
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "segmentron", "modules", "csrc")
main_source = os.path.join(extensions_dir, "vision.cpp")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
os.path.join(extensions_dir, "*.cu")
)
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": []}
define_macros = []
if (torch.cuda.is_available() and CUDA_HOME is not None) or os.getenv("FORCE_CUDA", "0") == "1":
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
# It's better if pytorch can do this by default ..
CC = os.environ.get("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin={}".format(CC))
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
"segmentron._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
setup(
name="segmentron",
version="0.1",
author="LikeLy-Journey",
url="https://github.com/LikeLy-Journey/SegmenTron",
description="platform for semantic segmentation base on pytorch.",
# packages=find_packages(exclude=("configs", "tests")),
# python_requires=">=3.6",
# install_requires=[
# "termcolor>=1.1",
# "Pillow",
# "yacs>=0.1.6",
# "tabulate",
# "cloudpickle",
# "matplotlib",
# "tqdm>4.29.0",
# "tensorboard",
# ],
# extras_require={"all": ["shapely", "psutil"]},
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)