-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmy_varBetweenSevenPoints.m
63 lines (59 loc) · 2.3 KB
/
my_varBetweenSevenPoints.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
function [y1,y2] = my_varBetweenSevenPoints(obj,mic,dx)
% Note:
% This function is used to calculate the mean and var of 7 points' DelayPoints.
% Usage:
% [y1,y2] = my_varBetweenSevenPoints(obj,mic,dx)
% Input arguments:
% obj : the center point (cartesian coordinates)
% mic : the cartesian coordinates of micphone arrays (4*3)
% dx : the radius of these 7 points
% Output arguments:
% [y1,y2] : the mean and var of these 7 points SRP
% For example:
% mic = [0 , 0 , 0 ;
% 0 , 0 , 0.1;
% 0.1, 0 , 0 ;
% 0 , 0 , 0.1];
% obj = [6,5,1.6];
% dx = 0.1;
% [y1,y2] = [1.0634,0.0299];
% 说明:
% 本函数用来计算某一中心点覆盖的周围7个点的时延点数误差的均值和方差
% 输入:声源坐标,阵列坐标,分辨率
% 输出:均值,方差
% 注意:这里以时延对应的距离误差最为输出并作图
% --------------------------------------------------------------
% 初始化
v = 340; % 声速
fs = 48000; % 采样率
delaycac_obj = [6.02;21.05;17.65;15.47;12.7;-3.89]; % 参考的时延点数,这个需要改
distance_cac = zeros(1,7);
obj_cac = ones(7,1)*obj-dx*[0 0 0;0 0 1;0 0 -1;0 1 0;0 -1 0;1 0 0;-1 0 0];
% --------------------------------------------------------------
% 循环计算误差
for kk = 1:7
% 计算距离差
discac = abs(obj_cac(kk,:)-mic(1,:));
distance1 = sqrt(sum(discac.^2)); % 目标到1号麦克风距离
discac = abs(obj_cac(kk,:)-mic(2,:));
distance2 = sqrt(sum(discac.^2)); % 目标到2号麦克风距离
discac = abs(obj_cac(kk,:)-mic(3,:));
distance3 = sqrt(sum(discac.^2)); % 目标到3号麦克风距离
discac = abs(obj_cac(kk,:)-mic(4,:));
distance4 = sqrt(sum(discac.^2)); % 目标到4号麦克风距离
% 计算时延点数矩阵
delaycac = [2*(distance1-distance2)/v*fs;
2*(distance1-distance3)/v*fs;
2*(distance1-distance4)/v*fs;
2*(distance2-distance3)/v*fs;
2*(distance2-distance4)/v*fs;
2*(distance3-distance4)/v*fs
];
% 计算误差
distance_cac(kk) = sum((delaycac-delaycac_obj).^2);
end
% --------------------------------------------------------------
% 输出
y1 = mean(distance_cac); % 均值
y2 = var(distance_cac,1); % 方差
end