-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.c
613 lines (507 loc) · 15.3 KB
/
functions.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/**
GapMis: a tool for pairwise sequence alignment with a single gap.
Copyright (C) 2011 Solon P. Pissis, Tomas Flouri
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <getopt.h>
#include "functions.h"
#include "EDNAFULL.h"
#include "EBLOSUM62.h"
/* long options for command-line switches */
static struct option long_options[] =
{
{ "sequence-a", required_argument, NULL, 'a' },
{ "sequence-b", required_argument, NULL, 'b' },
{ "gap-open-penalty", required_argument, NULL, 'g' },
{ "gap-extend-penalty", required_argument, NULL, 'e' },
{ "output-file", required_argument, NULL, 'o' },
{ "data-file", required_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "max-gap", required_argument, NULL, 'm' },
{ NULL, 0, NULL, 0 }
};
/* Decode the input switches */
int decode_switches ( int argc, char * argv [], struct TSwitch * sw )
{
int oi;
int opt;
double val;
char * ep;
/* initialisation */
sw -> seq_a = NULL;
sw -> seq_b = NULL;
sw -> gap_open_pen = 10.0;
sw -> gap_extend_pen = 0.5;
sw -> max_gap = -1;
sw -> out_file = ( char * ) malloc ( 15 * sizeof ( char ) );
sw -> matrix = ( char * ) malloc ( 15 * sizeof ( char ) );
strcpy ( sw -> out_file, "gapmis.out" );
strcpy ( sw -> matrix, "EDNAFULL" );
while ( ( opt = getopt_long ( argc, argv, "a:b:g:e:o:d:m:h", long_options, &oi ) ) != - 1 )
{
switch ( opt )
{
case 'a':
sw -> seq_a = optarg;
break;
case 'b':
sw -> seq_b = optarg;
break;
case 'o':
free ( sw -> out_file );
sw -> out_file = ( char * ) malloc ( ( strlen ( optarg ) + 1 ) * sizeof ( char ) );
strcpy ( sw -> out_file, optarg );
break;
case 'd':
free ( sw -> matrix );
sw -> matrix = ( char * ) malloc ( ( strlen ( optarg ) + 1 ) * sizeof ( char ) );
strcpy ( sw -> matrix, optarg );
break;
case 'g':
val = strtod ( optarg, &ep );
if ( optarg == ep )
{
return ( 0 );
}
sw -> gap_open_pen = val;
break;
case 'h':
return ( 0 );
case 'e':
val = strtod ( optarg, &ep );
if ( optarg == ep )
{
return ( 0 );
}
sw -> gap_extend_pen = val;
break;
case 'm':
val = strtol ( optarg, &ep, 10 );
if ( ! ep || ep == optarg )
{
return ( 0 );
}
sw -> max_gap = val;
break;
}
}
return ( optind );
}
/* Read a fasta file (with our without label) and return a structure containing
the label and the data
Parameters:
Input
*/
struct TSeq * read_fasta_file ( const char * szReadsFile )
{
struct TSeq * seq;
char * buf = NULL;
char tmp[BUFFER_SIZE];
FILE * fd;
int iMaxFileSize = 0;
int iCurFileSize = 0;
int i, j, n;
/* opens FASTA file */
if ( ! ( fd = fopen ( szReadsFile, "r" ) ) )
{
fprintf ( stderr, "Error: cannot open %s FASTA file!!!\n", szReadsFile );
return ( NULL );
}
/* reads the contents of the FASTA file into a buffer */
while ( fgets ( tmp, BUFFER_SIZE, fd ) )
{
if ( iMaxFileSize - iCurFileSize <= strlen ( tmp ) )
{
buf = ( char * ) realloc ( buf, ( iMaxFileSize + MAX_SIZE ) * sizeof ( char ) );
if ( ! buf )
{
fprintf ( stderr, "Error: not enough memory to read file %s!!!\n", szReadsFile );
fclose ( fd );
free ( buf );
return ( NULL );
}
iMaxFileSize = ( iMaxFileSize + MAX_SIZE ) * sizeof ( char );
}
buf[iCurFileSize] = '\0';
buf = strcat ( buf, tmp );
iCurFileSize += strlen ( tmp );
}
if ( ! buf || ! strlen ( buf ) )
{
fprintf ( stderr, "Error: file %s is empty!!!\n", szReadsFile );
fclose ( fd );
free ( buf );
return ( NULL );
}
fclose ( fd );
n = strlen ( buf );
i = 0; j = 0;
/* allocate memory for the placeholder structure */
seq = ( struct TSeq * ) calloc ( 1, sizeof ( struct TSeq ) );
/* in case it is a FASTA file, locate the description header */
if ( buf[0] == '>' )
{
while ( buf[i] != '\n' && buf[i] != '\0' ) ++ i;
if ( buf[i] == '\0' || i < 2 )
{
fprintf ( stderr, "Error: FASTA file %s does not contain any data!!!\n", szReadsFile );
free ( buf );
free ( seq );
return ( NULL );
}
/* copy the header in the placeholder structure */
seq -> header = ( char * ) malloc ( ( i ) * sizeof ( char ) );
strncpy ( seq -> header, buf + sizeof ( char ), i - 1);
seq -> header[i - 1] = '\0';
}
/* reads the data */
for ( ; i < n; ++ i )
{
if ( buf[i] == '\n' || buf[i] == '\t' || buf[i] == ' ' ) continue;
else buf[j++] = buf[i];
}
buf[j] = '\0';
if ( ! strlen ( buf ) )
{
fprintf ( stderr, "Error: FASTA file %s does not contain any data!!!\n", szReadsFile );
free ( buf );
free ( seq -> header );
free ( seq );
return ( NULL );
}
/* reduce the allocated memory to the exact amount */
buf = realloc ( buf, ( j + 1 ) * sizeof ( char ) );
seq -> data = buf;
return ( seq );
}
/*
The dynamic programming algorithm for calculating matrices G and H
*/
unsigned int dp_algorithm ( double ** G, unsigned int ** H, char * t, unsigned int n, char * p, unsigned int m, unsigned int matrix, unsigned int MAXgap )
{
double gap;
double mis;
unsigned int i;
unsigned int j;
double matching_score;
unsigned int j_min;
unsigned int j_max;
unsigned int valM;
unsigned int i_max;
i_max = min ( n, m + MAXgap );
for( i = 0; i < n + 1 ; i++ ) H[i][0] = i;
for( j = 0; j < m + 1 ; j++ ) H[0][j] = j;
for( i = 1; i < i_max + 1; i++)
{
j_min = max ( 1, (int) ( i - MAXgap ));
j_max = min ( m, (int) ( i + MAXgap ));
for( j = j_min; j <= j_max; j++ )
{
matching_score = ( matrix ? (double) pro_delta( t[i - 1], p[j - 1] ) : (double) nuc_delta( t[i - 1], p[j - 1] ) ) ;
if ( matching_score == ERR )
return 0;
mis = G[i - 1][j - 1] + matching_score;
gap = G[j][j];
valM = i - j;
if( j > i )
{
gap = G[i][i];
valM = j - i;
}
if( gap > mis ) H[i][j] = valM;
if( i == j ) gap = mis - 1;
G[i][j] = max ( mis, gap );
}
}
return 1;
}
/* Returns the score for matching character a and b based on EDNAFULL matrix */
int nuc_delta ( char a, char b )
{
unsigned int index_a = nuc_char_to_index ( a );
unsigned int index_b = nuc_char_to_index ( b );
if ( ( index_a < NUC_SCORING_MATRIX_SIZE ) && ( index_b < NUC_SCORING_MATRIX_SIZE ) )
return ( EDNAFULL_matrix[ index_a ][ index_b ] );
else //Error
return ( ERR );
}
/* Returns the score for matching character a and b based on EBLOSUM62 matrix */
int pro_delta ( char a, char b )
{
unsigned int index_a = pro_char_to_index( a );
unsigned int index_b = pro_char_to_index( b );
if ( ( index_a < PRO_SCORING_MATRIX_SIZE ) && ( index_b < PRO_SCORING_MATRIX_SIZE ) )
return ( EBLOSUM62_matrix[ index_a ][ index_b ] );
else //Error
return ( ERR );
}
/* Returns the index of char a in EDNAFULL matrix */
unsigned int nuc_char_to_index ( char a )
{
unsigned int index;
switch ( a )
{
case 'A':
index = 0; break;
case 'T':
index = 1; break;
case 'G':
index = 2; break;
case 'C':
index = 3; break;
case 'S':
index = 4; break;
case 'W':
index = 5; break;
case 'R':
index = 6; break;
case 'Y':
index = 7; break;
case 'K':
index = 8; break;
case 'M':
index = 9; break;
case 'B':
index = 10; break;
case 'V':
index = 11; break;
case 'H':
index = 12; break;
case 'D':
index = 13; break;
case 'N':
index = 14; break;
default:
fprintf ( stderr, "Error: unrecognizable character in one of the nucleotide sequences!!!\n" );
index = ERR; break;
}
return ( index );
}
/* Returns the index of char a in EBLOSUM62 matrix */
unsigned int pro_char_to_index ( char a )
{
unsigned int index;
switch ( a )
{
case 'A':
index = 0; break;
case 'R':
index = 1; break;
case 'N':
index = 2; break;
case 'D':
index = 3; break;
case 'C':
index = 4; break;
case 'Q':
index = 5; break;
case 'E':
index = 6; break;
case 'G':
index = 7; break;
case 'H':
index = 8; break;
case 'I':
index = 9; break;
case 'L':
index = 10; break;
case 'K':
index = 11; break;
case 'M':
index = 12; break;
case 'F':
index = 13; break;
case 'P':
index = 14; break;
case 'S':
index = 15; break;
case 'T':
index = 16; break;
case 'W':
index = 17; break;
case 'Y':
index = 18; break;
case 'V':
index = 19; break;
case 'B':
index = 20; break;
case 'Z':
index = 21; break;
case 'X':
index = 22; break;
case '*':
index = 23; break;
default:
fprintf ( stderr, "Error: unrecognizable character in one of the protein sequences!!!\n" );
index = ERR; break;
}
return ( index );
}
/* Computes the limits of the i-th coordinate for the matrix G in constant time */
unsigned int i_limits( unsigned int n, unsigned int m, unsigned int * up, unsigned int * down, unsigned int MAXgap )
{
if ( (int) m - (int) MAXgap < 0 ) (* up ) = 0;
else (* up ) = m - MAXgap;
if ( m + MAXgap > n ) (* down ) = n;
else (* down ) = m + MAXgap;
return ( 0 );
}
/* Computes the limits of the j-th coordinate for matrix G and H in constant time */
unsigned int j_limits ( unsigned int i, unsigned int m, unsigned int * left, unsigned int * right, unsigned int MAXgap )
{
if ( (int) i - (int) MAXgap > 0 ) (* left ) = i - MAXgap;
else (* left ) = 1;
if ( i + MAXgap > m ) (* right ) = m;
else (* right ) = i + MAXgap;
return ( 0 );
}
/*
Computes the optimal alignment using matrix G in O(2*MAXgap+1) time
Note: double gap_open_penalty, double gap_extend_penalty, double gap_open_offset_penalty are arguments given by the user to represent the gap penalty.
*/
unsigned int opt_solution ( double** G,
unsigned int n,
unsigned int m,
unsigned int MAXgap,
double gap_open_penalty,
double gap_extend_penalty,
double* MAXscore,
unsigned int* MINgap,
unsigned int* where,
unsigned int* start
)
{
double score = -DBL_MAX;
unsigned int i, j;
unsigned int up = 0;
unsigned int down = 0;
i_limits( n, m, &up, &down, MAXgap ); // computes the i coordinates for matrix G for the last column
for ( i = up ; i <= down ; i++ )
{
double temp_score = 0.0;
if ( i < m )
{
if ( m - i <= MAXgap )
{
temp_score = total_scoring ( m - i, G[i][m], gap_open_penalty, gap_extend_penalty );
if ( temp_score > score )
{
score = temp_score;
( *MAXscore ) = score;
( *MINgap ) = m - i;
( *where ) = 1; //where: gap is in the text and start backtracing from the last column
( *start ) = i; //backtrace from cell G[start,m]
}
}
}
else if ( i > m )
{
if ( i - m <= MAXgap )
{
temp_score = total_scoring( i - m, G[i][m], gap_open_penalty, gap_extend_penalty );
if ( temp_score > score )
{
score = temp_score;
( *MAXscore ) = score;
( *MINgap ) = i - m;
( *where ) = 2; //where: gap is in the pattern and start backtracing from last column
( *start ) = i; //backtrace from cell G[start,m]
}
}
}
else if ( i == m )
{
temp_score = total_scoring( 0, G[i][m], gap_open_penalty, gap_extend_penalty );
if ( temp_score > score ) // mgap = 0
{
score = temp_score;
( *MAXscore ) = score;
( *MINgap ) = 0;
( *where ) = 0; //there is no gap
( *start ) = m; //no need to backtrace
}
}
}
unsigned int left = 0;
unsigned int right = 0;
j_limits ( n, m, &left, &right, MAXgap ); // computes the j coordinates for matrix G for the last row
for ( j = left ; j < right ; j++ )
{
double temp_score = 0;
if ( n - j <= MAXgap )
{
temp_score = total_scoring( n - j, G[n][j], gap_open_penalty, gap_extend_penalty );
if ( temp_score > score )
{
score = temp_score;
( *MAXscore ) = score;
( *MINgap ) = n - j;
( *where ) = 3; //where: gap is in the pattern and start backtracing from last row
( *start ) = j; //backtrace from cell G[n,start]
}
}
}
return 1;
}
/* Gives the position of the gap in O(m) time */
unsigned int backtracing ( unsigned int** H, unsigned int m, unsigned int n, unsigned int start, unsigned int where, unsigned int* gap_pos )
{
unsigned int i, j;
( *gap_pos ) = 0;
if ( where == 1 || where == 2 )
{
i = start; j = m; //we start backtracing from the last column
}
else
{
i = n; j = start; //we start backtracing from the last row
}
while ( i > 0 && j > 0)
{
if ( H[i][j] == 0 )
{
--i; --j;
}
else
{
if ( i > j )
( *gap_pos ) = j;
else
( *gap_pos ) = i;
break;
}
}
return 1;
}
/*
Gives the total score of an alignment in constant time
Note: double matrix_score is the value of G[i][m], i.e. the score of an alignment WITHOUT the gap penalties
*/
double total_scoring( unsigned int gap, double matrix_score, double gap_open_penalty, double gap_extend_penalty )
{
return ( matrix_score + ( ( gap > 0 ) ? ( gap - 1 ) * gap_extend_penalty + gap_open_penalty : 0 ) );
}
/* Swaps the text and the pattern in case m > n */
unsigned int swap_txt_pat ( struct TSeq ** seqa, unsigned int * n, struct TSeq ** seqb, unsigned int * m )
{
struct TSeq * tmp;
tmp = *seqa;
*seqa = *seqb;
*seqb = tmp;
SWAP ( *n, *m );
return ( 1 );
}