-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathParameter_shape.cpp
144 lines (118 loc) · 3.41 KB
/
Parameter_shape.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
* DPPDiv version 1.0b source code (git: 9c0ac3d2258f89827cfe9ba2b5038f0f656b82c1)
* Copyright 2009-2011
* Tracy Heath(1,2,3) (NSF postdoctoral fellowship in biological informatics DBI-0805631)
* Mark Holder(1)
* John Huelsenbeck(2)
*
* (1) Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
* (2) Integrative Biology, University of California, Berkeley, CA 94720-3140
* (3) email: tracyh@berkeley.edu
*
* DPPDiv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License (the file gpl.txt included with this
* distribution or http://www.gnu.org/licenses/gpl.txt for more
* details.
*
* Some of this code is from publicly available source by John Huelsenbeck
*/
#include "Parameter.h"
#include "Parameter_shape.h"
#include "Parameter_tree.h"
#include "MbRandom.h"
#include "Model.h"
#include <cmath>
#include <iostream>
#include <iomanip>
using namespace std;
Shape::Shape(MbRandom *rp, Model *mp, int nc, double lam, bool fx) : Parameter(rp, mp) {
numCats = nc;
lambda = lam;
alpha = ranPtr->exponentialRv(lambda);
rates = MbVector<double>(numCats);
ranPtr->discretizeGamma( rates, alpha, alpha, numCats, false );
name = "SH";
if(fx){
alpha = 1.0;
}
}
Shape::~Shape(void) {
}
Shape& Shape::operator=(const Shape &s) {
if (this != &s)
clone(s);
return *this;
}
void Shape::clone(const Shape &s) {
if (numCats == s.numCats)
{
lambda = s.lambda;
alpha = s.alpha;
for (int i=0; i<numCats; i++)
rates[i] = s.rates[i];
}
else
{
cerr << "ERROR: Expected gamma rate vectors to be of equal size." << endl;
exit(1);
}
}
void Shape::print(std::ostream & o) const {
o << "Gamma Shape: " << alpha << "( ";
for (int i=0; i<numCats; i++)
o << fixed << setprecision(4) << rates[i] << " ";
o << ")" << endl;
}
double Shape::update(double &oldLnL) {
double tuning = log(2.0);
double oldAlpha = alpha;
double rv = ranPtr->uniformRv();
double newAlpha = oldAlpha * exp( tuning * (rv-0.5) );
bool validAlph = false;
double minA = 0.0001;
double maxA = 300.0;
do{
if(newAlpha < minA)
newAlpha = minA * minA / newAlpha;
else if(newAlpha > maxA)
newAlpha = maxA * maxA / newAlpha;
else
validAlph = true;
} while(!validAlph);
updateGammaRateCats(newAlpha);
alpha = newAlpha;
double lnProposalRatio = log(newAlpha) - log(oldAlpha);
double lnPriorRatio = lambda * (oldAlpha - newAlpha);
Tree *t = modelPtr->getActiveTree();
t->flipAllCls();
t->flipAllTis();
t->upDateAllCls();
t->upDateAllTis();
modelPtr->setTiProb();
return lnPriorRatio + lnProposalRatio;
}
double Shape::lnPrior(void) {
return ranPtr->lnExponentialPdf(lambda, alpha);
}
void Shape::updateGammaRateCats(double alph){
if(numCats == 1)
rates[0] = 1.0;
else
ranPtr->discretizeGamma(rates, alph, alph, numCats, false);
}
string Shape::writeParam(void){
stringstream ss;
ss << "Gamma Shape: " << alpha << "( ";
for (int i=0; i<numCats; i++)
ss << fixed << setprecision(4) << rates[i] << " ";
ss << ")" << endl;
string outp = ss.str();
return outp;
}